Milling Magic

Ion beams carve slices in frozen cells, giving biologists an interior view.

By | August 1, 2012

Cryoelectron tomography (CryoET)—electron microscopy of frozen tissues—allows unparalleled observations of molecular complexes in as natural a state as possible. However, current electron microscopes can only view samples to a limited depth—approximately 0.5–1 µm—which has restricted cryoET to analyses of cell surfaces, isolated organelles, or microorganisms.

To get a glimpse inside eukaryotic cells, researchers have tried freezing and then slicing them with extremely sharp diamond or glass knives—cryo-ultramicrotomy. But “cutting with a mechanical knife introduces compression artifacts, which hinder interpretation of the images,” says Jürgen Plitzko of the Max Planck Institute of Biochemistry in Germany. Another strategy, using a beam of gallium ions to erode the surface of cells from above, has also proven inadequate for imaging deeply embedded structures.

Plitzko and his team combined principles from both techniques to create thin sections of cells using a focused ion beam as a blade. The ion beam is directed at an individual cell at a shallow angle and carves away everything above and below a thin slice—200–400 nm—in the cell’s center.

David Agard of the University of California, San Francisco, says he is keen to start using the system. “I think it holds tremendous potential for cryo-tomography,” he says, “for the first time really opening up eukaryotic cell biology to detailed 3-D examination.” (PNAS, doi/10.1073/pnas.1201333109, 2012.) .

STATS TALK
COMPARING METHODS: THIN SECTION PRODUCTION SAMPLE THICKNESS SHORTCOMINGS ADVANTAGES
Cryo-ultramicrotomy Thin section of frozen sample sliced with diamond or glass knife 20–500 nm Slicing causes knife marks, compression and thus severe distortion. Good for studying larger structures, such as small organisms, eukaryotic cells and tissues.
Focused ion beam micromachining Thin section of plunge-frozen cell carved out by gallium ion beam focused at an acute angle 200–400 nm Each lamella takes 30–45 min to carve. Samples >10 µm take longer, which can cause cellular damage. Homogeneous thickness. Minimal-to-no distortion.

 

 

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: EllenHunt

EllenHunt

Posts: 74

August 20, 2012

Why not use femtolasers? That should work too.

Popular Now

  1. UC Berkeley Receives CRISPR Patent in Europe
    Daily News UC Berkeley Receives CRISPR Patent in Europe

    The European Patent Office will grant patent rights over the use of CRISPR in all cell types to a University of California team, contrasting with a recent decision in the U.S.

  2. DNA Replication Errors Contribute to Cancer Risk
  3. Should Healthy People Have Their Exomes Sequenced?
    Daily News Should Healthy People Have Their Exomes Sequenced?

    With its announced launch of a whole-exome sequencing service for apparently healthy individuals, Ambry Genetics is the latest company to enter this growing market. But whether these services are useful for most people remains up for debate.  

  4. Rethinking a Cancer Drug Target
    Daily News Rethinking a Cancer Drug Target

    The results of a CRISPR-Cas9 study suggest that MELK—a protein thought to play a critical role in cancer—is not necessary for cancer cell survival.

Business Birmingham