Advertisement
NeuroScientistNews
NeuroScientistNews

Next Generation: Regulated Wrinkles

Researchers devise a way to create predictably patterned microwrinkles.

By | August 9, 2012

image: Next Generation: Regulated Wrinkles Images taken with a 3-D microscope show wrinkled surfaces produced using a method developed by the MIT team. The size, spacing and angles of the wrinkles vary depending on how much the original underlying surface was stretched, and how the stretching was released. Jorge Luis Yague and Felice Frankel

Device: Sharkskin and raisins helped inspire researchers at Massachusetts Institute of Technology to create miniscule, precisely patterned wrinkles, with possible applications ranging from medical devices to light-enhancing technology in photovoltaics.

The project started as a way to design “anti-fouling” materials—surfaces that would inhibit the formation of bacterial biofilms, known as “biofouling.” It’s well known that surfaces with “topology”—such as the tooth-like projections on sharkskin—can prevent biofouling, explained Mary Boyce, head of the mechanical engineering department at MIT, who led the research. But rather than simply etch patterns into a surface, Boyce and her colleagues wanted a material that automatically carried this anti-fouling characteristic.

Enter the raisin. Raisins are wrinkled because the outer skin cannot shrink enough to accommodate its newly down-sized center, which contracts as a result of evaporative water loss. Boyce and her postdoc Jie Yin used two layers of differing elastic properties to get a similar effect.

First, a supple polydimethylsiloxane (PDMS) layer is stretched, then covered with a thin film of a stiffer polymer. When the tension in the PDMS is released, it shrinks, but the upper polymer layer cannot, so it wrinkles instead, explained Yin in an email. By releasing tension first in one direction, then in a second direction, rather than all at once, Yin forms wrinkles in a neat zigzag pattern.

What’s New: This zigzag pattern is the key, explained Michelle Khine, a professor of biomedical engineering at University of California, Irvine, who was not involved in the research. “This group has figured out how to make well-ordered wrinkles through an elegant and very simple approach,” said Khine. “This is a big deal because wrinkles are typically not well controlled... It's easier to do stuff with things that are ordered and predictable.”

Importance: The study may have begun with a specific goal—prevent biofouling—but it turns out Boyce and Yin’s patterned microwrinkles have many potential applications. Using anti-fouling materials in implantable medical devices like stents and catheters can help prevent infection in hospitalized patients. Other possibilities include photovoltaic devices, which are designed to capture energy from sunlight. Different patterns of wrinkles could transmit and reflect light differently, making the technology more efficient. Boyce also predicts that similar wrinkles may be used to enhance LED technology by surrounding the diode with a reflective surface to give a brighter output. Furthermore, texture can be used to control whether a surface repels water, like bird feathers, an application in demand for water-resistant fabrics.

Needs Improvement: The method still needs tweaking to optimize it for different applications, but Boyce and Yin are optimistic. Changing the type of polymer used in the upper layer, in addition to its thickness and the tension used, can help alter the angle of zigzagging, the height of the wrinkles, and the space between them, and even shrink them from micro-scale to nano-scale, said Yin.

Khine, who would like to see strategies for patterns other than the basic zigzag, said it will be “interesting to see how far this approach can go.”

J. Yin, et al., “Deterministic order in surface micro-topologies through sequential wrinkling,” Advanced Materials, 2012.

Advertisement

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: Michael Cammer

Michael Cammer

Posts: 1457

August 9, 2012

Raisins?  Pollen too.  The really cool 3D shapes of many pollens are in the desiccated condition. For example http://www.flickr.com/photos/m...

Avatar of: alexandru

alexandru

Posts: 1457

August 9, 2012

"how
far this approach can go?"

 

The man will become
capable to write words on DNA using electromagnetic field as support and electromagnetic
generators oscillating on the Eve mtDNA resonance frequency.

Abstract: Adam mtDNA
inheritance - ISBN 978-606-92107-1-0

The necessary and sufficient processes to a well function
of the human body are meticulous arranged by specific organizational cells, so
called process bio-managers, using inter-conditioned procedures, transmitted
through three ways of communication: chemical or “protein channelâ€쳌, electrical
or “ion channelâ€쳌 and mitochondrial or “Electromagnetic Field wireless channelâ€쳌.
The third type is out of the visible and measurable spectrum and raises a new
challenge to the scientist. For this type of bio communication we bring a new
theoretical hypothesis, based on the managerial multidisciplinary analysis of a
cybernetic model proposed by us, by simulating the human body function with the
virtual computerized system based on the management of its total knowledge and
its perfect quality way of function. The main bricks used for this virtual
construction are: the brain, as main bio-processor, and Eve mtDNA and Adam
mtDNA, as bio-antennas. This assembly of the total knowledge, build with “brain
reasoning, biological feeling, and unlimited soul feelingâ€쳌, is called by us
“main decision triangle, IQ-EQ-CQâ€쳌. The main principle of the management of the
total knowledge imposes us to not neglect the information produced by man
during the time, even if it seems creasy at the beginning (see brainstorming
definition). Because in the natural fertilisation the spermatozoids are
naturally equipped with the paternal mtDNA (it looks like reflex klystron power
amplifier, KPA = a veritable main bio-GPS), we consider that the paternal
mitochondria DNA have a very important role in the evolution of the human being
life quality and we have developed a new hypothesis, “Adam mtDNA theoryâ€쳌, in
addition to “Eve mtDNA theoryâ€쳌.

Keywords: brain, mitochondria, maternal, paternal
 

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Advertisement
Life Technologies