Microchannel Masterpiece

A precision microfluidic system enables single-cell analysis of growth and division.

By | December 1, 2012

How does a cell know when to stop growing and start dividing? And how do cells in a population achieve size homeostasis? Fundamental questions such as these are tricky to answer because measurements of growth, size, and cell division are generally based on averages from cell populations, which lack precision. A newly upgraded tool from Scott Manalis’s lab at Massachusetts Institute of Technology (MIT) now allows researchers to examine these parameters in individual cells. To measure the mass of single cells, the team devised a machine in 2007 called a suspended microchannel resonator (SMR) that measures the change in resonant frequency of a cantilever when a cell is passed back and forth across it. The bigger the cell, the greater the shift in resonant frequency.

The constant back and forth took a toll, however, and a cell would only survive in the SMR for about an hour. Now the team has modified the device to reduce the amount of back and forth, improve the cantilever’s precision, and include a microscope to observe cell cycle progression. With the new version the team has been able to study cell growth over several generations—removing one daughter cell per division to ensure continued single cell analysis.

“This is clearly a big step up,” says Frederick Cross of Rockefeller University in New York City. “It’s a major technical improvement.”

“We can now measure the mass of a cell to within approximately 0.05% error,” says Sungmin Son, a graduate student at MIT, who helped develop the device. “It is this extraordinary precision that led us to find the unique features in growth.” Indeed, the team discovered that, rather than size, it is a cell’s growth rate that determines whether and when it starts replicating its DNA (Nat Methods, 9:910-12, 2012.)

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Running on Empty
    Features Running on Empty

    Regularly taking breaks from eating—for hours or days—can trigger changes both expected, such as in metabolic dynamics and inflammation, and surprising, as in immune system function and cancer progression.

  2. Athletes’ Microbiomes Differ from Nonathletes
  3. Mutation Linked to Longer Life Span in Men
  4. Gut Feeling
    Daily News Gut Feeling

    Sensory cells of the mouse intestine let the brain know if certain compounds are present by speaking directly to gut neurons via serotonin.