Advertisement

Opinion: The Present and Future of Neurogenomics

Support the BRAIN Initiative, but don’t overlook the neurogenomic diagnostics that are already driving breakthroughs in brain and rare neurological disorders.

By | June 13, 2013

WIKIMEDIA, GARPENHOLMOn April 2nd, 2013, President Obama proposed a forward-thinking, $100 million research program designed to unlock the mysteries of the human brain. The BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative seeks to identify how brain cells and neural circuits interact in order to inform the development of future treatments for brain disorders, including Alzheimer’s disease, epilepsy, and traumatic brain injury.

This Initiative could favorably contribute to medical practice years from now. It should not, however, overshadow the potential of neurogenomic advances to improve the diagnosis, treatment and management of neurological disorders right now.

Most of my career has focused on neurogenomics. During the Human Genome Project era, I managed a clinical neurogenomics program at the National Institutes of Health to further understanding the genetic underpinnings of neurological disorders to help diagnose, treat, cure, and even prevent disease. Today, I oversee the development of neurodiagnostics for the neurology business of Quest Diagnostics, with an emphasis on rare neurological disorders, autism, and dementias.

Over the years, I’ve come to identify certain obstacles that prevent the translation of neurogenomic science into effective clinical management. These obstacles are surmountable, but they require a fundamental shift in how care is delivered to patients with neurological disorders.

Our current healthcare system groups healthcare professionals into two categories: generalists, such as primary care physicians and internists, and specialists, including neurologists. We assume that the former have the knowledge to reliably refer patients, when appropriate, to the latter. This may have been a fair assumption in the past, but in the age of genomic medicine, is it still valid?

In the case of neurogenomic disorders, such as genetic forms of epilepsy, neuromuscular disorders, dementia, and developmental disabilities overlapping clinical signs and symptoms often present a diagnostic challenge for neurologists, and even more so for generalists. A dearth of clinical information available on rare disorders, and the infrequency with which primary care physicians come in contact with effected patients, makes diagnosis even more difficult.

Dravet syndrome, for example, is a rare and catastrophic form of infantile epilepsy that is associated with a high incidence of developmental delays and even SUDEP (sudden unexplained death in epilepsy). Dravet is caused by a genetic defect in the SCN1A gene-affecting sodium channel. While not curable, the condition can be managed if diagnosed—but only if treating physicians are aware of the disorder, treatment options, and the detrimental effects of certain anticonvulsants.

Through advances in laboratory diagnostics, physicians are increasingly equipped to pinpoint the molecular causes of these diseases—some of which are amenable to treatment. But too often, the only clinicians who know about the tests and treatment options are specialists.

We must work more closely with medical societies and advocacy groups to educate primary care professionals and even patients in the value of, and tools for, diagnosing and treating neurological disorders.

Neurogenomic research is revealing that some rare disorders share similar molecular markers and mechanisms. By categorizing these rare disorders into clinical areas, we potentially reduce an otherwise lengthy diagnostic process for the patient and advance the development of new treatment options. Greater investment in new diagnostics that pinpoint molecular markers for disease will help remove the mystery that clouds the diagnosis of many disorders.

Too few clinicians, including neurologists, can keep on top of the rapid evolution of genomic science and diagnostics. As a result, patients are often referred from physician to physician, and administered test after test, in a protracted process to diagnose and treat. This wastes healthcare dollars. More importantly, it creates terrible anxiety and frustration for patients.

To alleviate this problem, medical societies need to do more to cultivate sub-specialists in neurogenomics—clinicians who have deep specialized expertise in specific neurological diseases, particularly rare disorders. With such experience, these experts can more efficiently and reliably diagnose the patient’s disorder.

While the BRAIN Initiative may yield clinically valuable insights in the future, scientists and physicians can do a great deal now with current technologies to translate genomic knowledge into effective diagnosis, management and, in some cases, treatment. With greater genomics education and collaboration, we can help improve the quality of life for patients with neurological disorders—and that, ultimately, is the most meaningful measurement of success.

Joseph J. Higgins, M.D., F.A.A.N. is medical director for the neurology business of Quest Diagnostics, including its rare neurological diagnostics subsidiary Athena Diagnostics.

Advertisement

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Hamamatsu
Hamamatsu
Advertisement
Life Technologies