Advertisement
Sigma-Aldrich
Sigma-Aldrich

Shushing RNA

The cell detains potentially harmful RNA messages in the spliceosome long enough to create interfering RNAs against the aberrant messages.

By | August 1, 2013

EDITOR'S CHOICE IN RNA INTERFERENCE

GENOME JUMPERS: When unrestrained, transposons replicate and insert them­selves randomly throughout the genome.COURTESY OF PHILLIP DUMESIC, UCSF (Adapted from Transposon by Lauren Solomon, Broad Institute)

The paper
P.A. Dumesic et al., “Stalled spliceosomes are a signal for RNAi-mediated genome defense,” Cell, 152:957-68, 2013.

The finding
Although small interfering RNAs (siRNAs) are largely explored today for their potential in gene therapy, the phenomenon was first described in plants, which employ siRNAs to disable foreign RNA from viral infections. Researchers have since learned that siRNAs also play a role in suppressing transposable elements, which replicate and reinsert throughout the genome, occasionally disrupting the function of essential genes. Now, Hiten Madhani of the University of California, San Francisco, and colleagues have implicated the spliceosome, a molecular complex that excises introns from pre-messenger RNAs (pre-mRNAs), in siRNA-mediated suppression.

The splice of life
Like any gene, transposable elements are transcribed into pre-mRNAs that must be processed by the spliceosome. Madhani’s team noticed, however, that transposable-element pre-mRNAs appeared to be associated with spliceosomes more frequently than other pre-mRNAs.

The scan
When the researchers searched for proteins associated with the spliceosome and with siRNAs, they discovered a novel complex they dubbed spliceosome-coupled and nuclear RNAi, or SCANR, that appeared to be involved in producing siRNAs. Madhani reasoned that the spliceosome was “being used to recognize self- from nonself-DNA,” such as transposable elements. Such transcripts would have been introduced later in a cell’s evolution, and may not be optimized for the cell’s splicing machinery, causing it to stall, thereby giving SCANR more time to produce siRNA against the offending message.

The model
The paper reveals “an unexpected and previously unappreciated way for the cell to score an RNA as ‘aberrant’ and therefore in need of silencing,” says Erik Sontheimer, a researcher at Northwestern University.

Advertisement

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo
Advertisement
EMD Millipore
EMD Millipore

Popular Now

  1. The Mycobiome
    Features The Mycobiome

    The largely overlooked resident fungal community plays a critical role in human health and disease.

  2. Antibody Alternatives
    Features Antibody Alternatives

    Nucleic acid aptamers and protein scaffolds could change the way researchers study biological processes and treat disease.

  3. Circadian Clock and Aging
    Daily News Circadian Clock and Aging

    Whether a critical circadian clock gene is deleted before or after birth impacts the observed aging-related effects in mice.

  4. Holding Their Ground
    Features Holding Their Ground

    To protect the global food supply, scientists want to understand—and enhance—plants’ natural resistance to pathogens.

Advertisement
Bio-Rad
Bio-Rad
Advertisement
Life Technologies