Some Assembly Required

Researchers construct nanoscale DNA cages that could eventually be used to deliver drugs to target tissues.

By | September 3, 2013

WIKIMEDIA, CHRISTOPH BOCKChemists from McGill University in Montreal, Canada, have devised a technique for assembling nanoscale structures—or “cages”—that encapsulate small molecules, according to a report published in Nature Chemistry this week (September 1). The researchers said that these cages, which release their contents upon binding complementary DNA, could be useful for drug-delivery applications down the line.

The authors also noted that these DNA cages could be handy research tools, as they con?ne their contents in hydrophobic environments composed of small, lipid-like chains. They added that the assembly scheme can be used to form a variety of structures. With eight potential biding sites on each cage, as many as 26 different isomers could be developed.

“This research is important for drug delivery, but also for fundamental structural biology and nanotechnology,” lead author Hanadi Sleiman said in a press release. “It opens up a range of new possibilities for designing DNA-based nanomaterials.”

Study coauthor Thomas Edwardson added that these cages can be “easily tuned” to suit a variety of purposes. “In a future application, one can imagine a DNA cube that carries drug cargo to the diseased cell environment, which will trigger the release of the drug,” he said in the release.

Still, Sleiman noted that much work remains to be done. To date, she said, the work has only been carried out in test tubes. “To be a powerful drug delivery system, you need the release to happen inside or on the cell,” Sleiman told Wired. “That’s going to be the next hurdle.”


Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Inside a Lab Mouse’s High-Fat Diet
  2. Battling the Bulge
    Bio Business Battling the Bulge

    Weight-loss drugs that target newly characterized obesity-related receptors and pathways could finally offer truly effective fat control.

  3. How Gastric Bypass Can Kill Sugar Cravings
  4. Birth of the Skin Microbiome
    Daily News Birth of the Skin Microbiome

    The immune system tolerates the colonization of commensal bacteria on the skin with the aid of regulatory T cells during the first few weeks of life, a mouse study shows.

Life Technologies