Advertisement

Graphene Coating Cleans Up Clots

Blood clots on medical devices might be reduced by a graphene-based material.  

By | February 12, 2014

Schematic illustration of graphene-hemin-GOx conjugates.TENG XUE AND NATHAN WEISSProblematic blood clots can form on medical devices, such as artificial heart valves. And anti-thrombotic agents added to medical devices are eventually used up. Scientists reported in Nature Communications this week (February 11) on a potential solution: a coating that catalyzes the production of anti-clotting molecules in blood without the need to add reagents.

The platform supporting the catalysts is made of graphene, a single layer mesh of carbon atoms. Attached to the mesh are hemin molecules and glucose oxidase enzymes, which use L-arginine and glucose present in the blood to produce nitroxyl, an anti-clotting molecule. “The embedment of such tandem catalysts into biocompatible films can create a surface coating with excellent antiplatelet characteristics,” the authors wrote in their study.

Importantly, the generation of nitroxyls is sustained without needing to replenish the coating. According to a press release, the authors show that “blood clotting on a plastic film coated with their material is substantially reduced and remains so even after three days.”

Advertisement

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: JonRichfield

JonRichfield

Posts: 23

February 13, 2014

Not understood: three days???

Could someone please elaborate on why this is promising? How long is needed for such devices? What happens after the three days? A new heart valve?

Or if clotting no longer matters after three days, why not?

Follow The Scientist

icon-facebook icon-linkedin icon-twitter icon-vimeo icon-youtube
Advertisement

Stay Connected with The Scientist

  • icon-facebook The Scientist Magazine
  • icon-facebook The Scientist Careers
  • icon-facebook Neuroscience Research Techniques
  • icon-facebook Genetic Research Techniques
  • icon-facebook Cell Culture Techniques
  • icon-facebook Microbiology and Immunology
  • icon-facebook Cancer Research and Technology
  • icon-facebook Stem Cell and Regenerative Science
Advertisement
Advertisement
Life Technologies