Giant Petri Dish Displays Evolution in Space and Time

As E. coli bacteria spread over increasingly concentrated antibiotics, researchers discover novel evolutionary pathways that confer resistance.

By | September 8, 2016


YOUTUBE, HARVARD MEDICAL SCHOOL

There are small petri dishes, there are large petri dishes, and then there is MEGA, an enormous, 2-foot-by-4-foot slab of black agar infused with a gradient of antibacterial drugs. Researchers built this behemoth to watch evolution in both time and space—and as they report today (September 8) in Science, MEGA has revealed that the fittest antibiotic-resistant bacteria may not necessarily grow the fastest.

On the oversized plate, “you can see evolutionary branching as it happens,” said Luke McNally, an evolutionary microbiologist at the University of Edinburgh, who co-authored an accompanying editorial. “It’s amazingly, strikingly beautiful.”

Researchers traditionally study bacterial evolution in liquid culture, which forces the bacteria to compete with the flask’s entire population for resources. By contrast, the new microbial evolution and growth arena (MEGA) plate separates bacteria both spatially and temporally, thereby reducing competition, said study coauthor Michael Baym of Harvard Medical School (HMS). The set-up shows the oft-overlooked importance of the physical space surrounding bacteria, said Viktória Lázár, a postdoc who studies evolutionary biology at the Biological Research Centre of Hungary, who was not part of the study.

Additionally, the plate can host a bacterial population much larger than a typical liquid experiment can, making it likelier to see rare mutants, said study coauthor Roy Kishony, who leads an antibiotic-resistance research group at HMS and Technion–Israel Institute of Technology. “It really allows us to see, with our own eyes, the dynamics of evolution,” he added.

Kishony and study coauthor Tami Lieberman, now a postdoc at MIT, wanted to create a vivid demonstration of evolution for their students. Together with Baym and other collaborators, they built the MEGA plate from scratch. They filled the giant acrylic dish with two layers of agar—a solid base, made up of discrete stripes laced with either trimethoprim or ciprofloxacin that increased in concentration toward the center of the plate, and a top coat of viscous “swim agar” to allow bacterial movement. The lower agar layer was mixed with India ink to provide contrast with the white bacteria seeded at the antibiotic-free ends of the dish.

For 10 days, the researchers imaged the E. coli every 10 minutes as the microbes expanded across the plate, and saw that the bacteria paused briefly at the boundaries of increasingly stringent antibiotic concentrations until a mutant struck out into the higher-drug territory. By challenging the bacteria with differing doses of antibiotic in the first step of the gradient, the team demonstrated that E. coli evolve higher resistance more quickly if they first encounter an intermediate, rather than a high, concentration of antibiotic.

Using the easy-to-see evolutionary trajectory of the bacteria as a guide, the researchers isolated and sequenced the charge-leading mutants. They found adaptive mutations in the gene for the proofreading enzyme DNA polymerase III, the target genes of the antibiotics, and in unexpected genes such as those coding for a phosphate transporter and a kinase that don’t have a known function in establishing resistance, hinting at alternative pathways that could arise.

The scientists were also intrigued to find that many bacteria behind those at the frontier—those that became resistant to antibiotics, but grew more slowly as a result—acquired mutations that further boosted both growth and antibiotic resistance later on. In fact, in a head-to-head race with the bacteria that originally outstripped them, these slow-to-grow bacteria were much more successful by the end of the experiment. Previously, it was commonly thought that regaining growth might require giving up newly acquired resistance, but these mutants suggested that wasn’t the case. “The way to overcome an evolutionary tradeoff is not always to revert back to what you were,” Baym said. “You can get growth back in more ways than just losing resistance.”

McNally said he is excited about MEGA’s potential to investigate new angles of the pressing societal problem of antibiotic resistance, such as the interactions among multiple drugs or multiple bacterial species. Yet, Julian Davies, who studies antibiotics at the University of British Columbia, is not convinced that synthetic trimethoprim and ciproflaxacin and an artificial environment are relevant to how antibiotic resistance develops in soil or the human gut. “It’s a nice paper,” he said, but “it would be really useful if you could duplicate this in the stomach system.”

Whatever the MEGA plate may yet reveal about bacterial evolution, Baym said he believes the platform will fulfill its original purpose as an educational tool. Lázár’s colleague Réka Spohn, a graduate student, agreed: “It’s a really amazing and easy way to show evolution in action to everyone,” she said, and to make abstract concepts such as evolution and mutation concrete.

M. Baym et al., “Spatiotemporal microbial evolution on antibiotic landscapes,” Science, doi:10.1126/science.aag0822, 2016.

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: JonRichfield

JonRichfield

Posts: 131

September 9, 2016

Beautifully designed analytical illustration, but one that leaves me with a semantic problem. I hesitate to call it an experiment, but maybe we need a separate word for an open-ended investigation of such a type.

Or possibly it is an experiment, where you do something as a basis for seeing lots of things that might happen, but leaving us with a need for another term to refer to the more routine, narrowly defined, controlled setups, with tightly constrained predictions and analyses.

Either way, experimental design, and perhaps even more greatly, experimental conception, will remain one of the greatest obstacles to research scientists who thought they understood it. Some work is a pain to read, and an even greater pain to read the discussions and conclusions of. And some leads to withdrawn work or worse.

This one however, leaves one open for more. It seems to me that it suggests lines of homologous investigations on a larger scale, but with multiple vessels, like that other work of multiple decades and successive inoculations of new generations of flasks.

I'll bear that in mind in coming years. This could be the start of something big.

Avatar of: lj

lj

Posts: 4

September 9, 2016

Yikes!  Interesting approach, but one simplistic comment.  Please be very careful with decontamination.  You've got a very big slab of antibiotic resistant E. coli.  Careful how you handle it, don't let it escape.

Avatar of: FishHead

FishHead

Posts: 2

September 9, 2016

Interesting study. I wonder though did the investigators consider difusion of the antibiotics from one strip to another? ie a zone where both cirpofloxacin and trimethoprim intermingle in some gradient? Would potentiation or its reverse cause any interpretational differnence on what is concluded?

Avatar of: dumbdumb

dumbdumb

Posts: 86

September 9, 2016

I find always sad reading about primitive measure units like foot, inches, pounds, .... in a scientific contest.

How many FL oz were needed to fill up the 2 foot by 4 foot plate?

I feel like being ordering at quiznos!

Avatar of: James V. Kohl

James V. Kohl

Posts: 463

September 9, 2016

Re: “It’s a really amazing and easy way to show evolution in action to everyone,” she said, and to make abstract concepts such as evolution and mutation concrete.

They showed how ecological variation is linked from the innate immune system to supercoiled DNA, which protects all organized genomes from virus-driven entropy. Simply put, they linked nutrient-dependent quorum sensing to the physiology of pheromone-controlled reproduction in species from microbes to humans.

If they had showed evolution in action, their claims would link mutations to the weekend resurrection of the bacterial flagellum in Pseudomonas florescens, and they would refute every aspect of neo-Darwinian theory via the speed at which ecological adaptations in morphological and behavioral phenotypes occur.

See: Evolutionary Rewiring

Strong selective pressure can lead to rapid and reproducible evolution in bacteria.

Avatar of: dumbdumb

dumbdumb

Posts: 86

Replied to a comment from James V. Kohl made on September 9, 2016

September 16, 2016

Dude! What evolution!

It was the Mighty God that in His infinite wisdom and power gave the bacteria the permission to grow

Avatar of: patyemma

patyemma

Posts: 1

January 17, 2017

This is an outstanding perspective for teaching a fresh conception on evolution mechanisms. Fascinating¡

Popular Now

  1. Publishers’ Legal Action Advances Against Sci-Hub
  2. How Microbes May Influence Our Behavior
  3. Metabolomics Data Under Scrutiny
    Daily News Metabolomics Data Under Scrutiny

    Out of 25,000 features originally detected by metabolic profiling of E. coli, fewer than 1,000 represent unique metabolites, a study finds.

  4. Sexual Touch Promotes Early Puberty
    Daily News Sexual Touch Promotes Early Puberty

    The brains and bodies of young female rats can be accelerated into puberty by the presence of an older male or by stimulation of the genitals.

AAAS