Infographic: Cross-Kingdom RNAi

Evidence from laboratory studies of plants and their fungal pathogens indicates that both parties can fling RNAs back and forth into the other’s cells.

By | February 1, 2017

Plants appear to use RNA molecules to resist fungal infection, while fungal microbes call upon RNA to enhance their spread. Both types of organisms achieve their desired outcomes through the same molecular process: RNA interference (RNAi), which disrupts gene expression by destroying target messenger RNAs.


The plant produces a small RNA precursor, either a long double-stranded RNA or a pre-microRNA, with sequence similarity to a fungal gene (1). Researchers have engineered the sequence into the genomes of crop plants or model organisms and demonstrated superior fungal resistance, although one recent study showed plants may naturally encode sequences to protect themselves against pathogens.

Evidence points to the idea that the small RNA precursors can pass directly to the fungal cell (2)  or undergo processing into small RNAs prior to transfer (3). If the precursor leaves the plant intact, the fungus’s processing machinery chops it up (4). In either case, the result is a plant small RNA inside the fungal cell, though the mechanism of transfer remains unknown.

Upon additional processing in the fungal cell, a single strand of the small RNA becomes part of the RNA-induced silencing complex (RISC), which then destroys an mRNA with a matching sequence (5). If the transcript is essential to fungus growth, the pathogen dies and the plant staves off disease.



Scientists have also discovered that fungal pathogens can send RNAs into plant cells to aid their invasion. Similar to the reverse process, the fungus generates small RNA precursors whose sequences complement those of plant mRNAs (1). A fungal protein slices up the small RNA precursors to produce small RNAs (2), which are then passed over to the plant cell via unknown means.
Inside the plant cell, the small RNAs are incorporated into the plant’s RISC and direct the complex to degrade the target transcript (3). If the genes affected are involved in plant immunity, the fungal infection expands.


Read the full story.

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Running on Empty
    Features Running on Empty

    Regularly taking breaks from eating—for hours or days—can trigger changes both expected, such as in metabolic dynamics and inflammation, and surprising, as in immune system function and cancer progression.

  2. Gut Feeling
    Daily News Gut Feeling

    Sensory cells of the mouse intestine let the brain know if certain compounds are present by speaking directly to gut neurons via serotonin.

  3. Athletes’ Microbiomes Differ from Nonathletes
  4. Government Nixes Teaching Evolution in Turkish Schools