SKIN
With a range of habitats, including invaginations, appendages, and various glands and follicles, the skin is home to some of the most diverse microbial communities on the human body. The oily, or sebaceous, sites of the head, neck, and trunk are dominated by *Propionibacterium*, including *P. acnes*; moist sites such as the crease of the elbow, below a woman’s breasts, or between the toes are frequented by *Corynebacterium*; and the dry sites of the body, such as the forearm or leg, are most commonly home to *Staphylococcus* species, in particular, *S. epidermidis*. The skin microbiome is now being appreciated for its direct and indirect roles in immunity, secreting antimicrobial substances that help fight pathogenic invaders and interacting with human immune cells to influence their behavior.

MOUTH
Diverse microbial communities are found on the tongue, the roof of the mouth, the teeth, and the gums, with some 700 species identified so far. In addition to affecting the health of the mouth itself, oral bacteria have been implicated in cardiovascular disease, cancer, rheumatoid arthritis, and more. The oral microbiome is also suspected of seeding the microbial communities in other body sites, including the gastrointestinal tract, the lungs, and the placenta.

LUNGS
With a microbiome about 1,000 times less dense than the oral microbiome that feeds it, and some 1 million to 1 billion times less dense than the gut, the microbes of the lung are nevertheless being recognized for their role in health and disease. Healthy lungs are typically home to *Streptococcus*, *Prevotella*, and *Veillonella* species, and shifts in the microbial community have been linked to chronic diseases, including cystic fibrosis, chronic obstructive pulmonary disease, asthma, and HIV.

VAGINA
While the microbial communities of most women’s vaginas are dominated by *Lactobacillus* bacteria—which ferment carbohydrates to lactic acid, yielding a low pH that is toxic to many pathogenic microbes—about 25 percent of women have fewer lactobacilli and greater numbers of other lactic acid-producing anaerobes. The composition of the vagina’s microbial community varies by race, among other things, and an individual’s vaginal microbiome can change dramatically over time.

MOTHER AND CHILD
Newborn babies are already populated with diverse bacteria, including *Actinobacteria*, *Proteobacteria*, and *Bacteroides* species. Analysis of the placental tissue suggests that bacteria may be seeded from the mother’s mouth microbiome. After birth, babies are exposed to the mother’s breast milk microbiome, which is home to diverse populations of *Streptococcus*, *Staphylococcus*, *Serratia*, and *Corynebacterium*.

SKIN
With a range of habitats, including invaginations, appendages, and various glands and follicles, the skin is home to some of the most diverse microbial communities on the human body. The oily, or sebaceous, sites of the head, neck, and trunk are dominated by *Propionibacterium*, including *P. acnes*; moist sites such as the crease of the elbow, below a woman’s breasts, or between the toes are frequented by *Corynebacterium*; and the dry sites of the body, such as the forearm or leg, are most commonly home to *Staphylococcus* species, in particular, *S. epidermidis*. The skin microbiome is now being appreciated for its direct and indirect roles in immunity, secreting antimicrobial substances that help fight pathogenic invaders and interacting with human immune cells to influence their behavior.

MOUTH
Diverse microbial communities are found on the tongue, the roof of the mouth, the teeth, and the gums, with some 700 species identified so far. In addition to affecting the health of the mouth itself, oral bacteria have been implicated in cardiovascular disease, cancer, rheumatoid arthritis, and more. The oral microbiome is also suspected of seeding the microbial communities in other body sites, including the gastrointestinal tract, the lungs, and the placenta.

LUNGS
With a microbiome about 1,000 times less dense than the oral microbiome that feeds it, and some 1 million to 1 billion times less dense than the gut, the microbes of the lung are nevertheless being recognized for their role in health and disease. Healthy lungs are typically home to *Streptococcus*, *Prevotella*, and *Veillonella* species, and shifts in the microbial community have been linked to chronic diseases, including cystic fibrosis, chronic obstructive pulmonary disease, asthma, and HIV.

VAGINA
While the microbial communities of most women’s vaginas are dominated by *Lactobacillus* bacteria—which ferment carbohydrates to lactic acid, yielding a low pH that is toxic to many pathogenic microbes—about 25 percent of women have fewer lactobacilli and greater numbers of other lactic acid-producing anaerobes. The composition of the vagina’s microbial community varies by race, among other things, and an individual’s vaginal microbiome can change dramatically over time.

MOTHER AND CHILD
Newborn babies are already populated with diverse bacteria, including *Actinobacteria*, *Proteobacteria*, and *Bacteroides* species. Analysis of the placental tissue suggests that bacteria may be seeded from the mother’s mouth microbiome. After birth, babies are exposed to the mother’s breast milk microbiome, which is home to diverse populations of *Streptococcus*, *Staphylococcus*, *Serratia*, and *Corynebacterium*.

SKIN
With a range of habitats, including invaginations, appendages, and various glands and follicles, the skin is home to some of the most diverse microbial communities on the human body. The oily, or sebaceous, sites of the head, neck, and trunk are dominated by *Propionibacterium*, including *P. acnes*; moist sites such as the crease of the elbow, below a woman’s breasts, or between the toes are frequented by *Corynebacterium*; and the dry sites of the body, such as the forearm or leg, are most commonly home to *Staphylococcus* species, in particular, *S. epidermidis*. The skin microbiome is now being appreciated for its direct and indirect roles in immunity, secreting antimicrobial substances that help fight pathogenic invaders and interacting with human immune cells to influence their behavior.

MOUTH
Diverse microbial communities are found on the tongue, the roof of the mouth, the teeth, and the gums, with some 700 species identified so far. In addition to affecting the health of the mouth itself, oral bacteria have been implicated in cardiovascular disease, cancer, rheumatoid arthritis, and more. The oral microbiome is also suspected of seeding the microbial communities in other body sites, including the gastrointestinal tract, the lungs, and the placenta.

LUNGS
With a microbiome about 1,000 times less dense than the oral microbiome that feeds it, and some 1 million to 1 billion times less dense than the gut, the microbes of the lung are nevertheless being recognized for their role in health and disease. Healthy lungs are typically home to *Streptococcus*, *Prevotella*, and *Veillonella* species, and shifts in the microbial community have been linked to chronic diseases, including cystic fibrosis, chronic obstructive pulmonary disease, asthma, and HIV.

VAGINA
While the microbial communities of most women’s vaginas are dominated by *Lactobacillus* bacteria—which ferment carbohydrates to lactic acid, yielding a low pH that is toxic to many pathogenic microbes—about 25 percent of women have fewer lactobacilli and greater numbers of other lactic acid-producing anaerobes. The composition of the vagina’s microbial community varies by race, among other things, and an individual’s vaginal microbiome can change dramatically over time.

MOTHER AND CHILD
Newborn babies are already populated with diverse bacteria, including *Actinobacteria*, *Proteobacteria*, and *Bacteroides* species. Analysis of the placental tissue suggests that bacteria may be seeded from the mother’s mouth microbiome. After birth, babies are exposed to the mother’s breast milk microbiome, which is home to diverse populations of *Streptococcus*, *Staphylococcus*, *Serratia*, and *Corynebacterium*.

SKIN
With a range of habitats, including invaginations, appendages, and various glands and follicles, the skin is home to some of the most diverse microbial communities on the human body. The oily, or sebaceous, sites of the head, neck, and trunk are dominated by *Propionibacterium*, including *P. acnes*; moist sites such as the crease of the elbow, below a woman’s breasts, or between the toes are frequented by *Corynebacterium*; and the dry sites of the body, such as the forearm or leg, are most commonly home to *Staphylococcus* species, in particular, *S. epidermidis*. The skin microbiome is now being appreciated for its direct and indirect roles in immunity, secreting antimicrobial substances that help fight pathogenic invaders and interacting with human immune cells to influence their behavior.

MOUTH
Diverse microbial communities are found on the tongue, the roof of the mouth, the teeth, and the gums, with some 700 species identified so far. In addition to affecting the health of the mouth itself, oral bacteria have been implicated in cardiovascular disease, cancer, rheumatoid arthritis, and more. The oral microbiome is also suspected of seeding the microbial communities in other body sites, including the gastrointestinal tract, the lungs, and the placenta.

LUNGS
With a microbiome about 1,000 times less dense than the oral microbiome that feeds it, and some 1 million to 1 billion times less dense than the gut, the microbes of the lung are nevertheless being recognized for their role in health and disease. Healthy lungs are typically home to *Streptococcus*, *Prevotella*, and *Veillonella* species, and shifts in the microbial community have been linked to chronic diseases, including cystic fibrosis, chronic obstructive pulmonary disease, asthma, and HIV.

VAGINA
While the microbial communities of most women’s vaginas are dominated by *Lactobacillus* bacteria—which ferment carbohydrates to lactic acid, yielding a low pH that is toxic to many pathogenic microbes—about 25 percent of women have fewer lactobacilli and greater numbers of other lactic acid-producing anaerobes. The composition of the vagina’s microbial community varies by race, among other things, and an individual’s vaginal microbiome can change dramatically over time.

MOTHER AND CHILD
Newborn babies are already populated with diverse bacteria, including *Actinobacteria*, *Proteobacteria*, and *Bacteroides* species. Analysis of the placental tissue suggests that bacteria may be seeded from the mother’s mouth microbiome. After birth, babies are exposed to the mother’s breast milk microbiome, which is home to diverse populations of *Streptococcus*, *Staphylococcus*, *Serratia*, and *Corynebacterium*.