MECHANISMS OF ACQUIRED RESISTANCE
Cancers appear to be able to evolve resistance to many of the therapies doctors have tried. Resistance to chemotherapy likely encompasses a broad range of mechanisms having to do with DNA repair, cell cycle arrest, apoptotic pathways, and others, many of which are still unknown. When it comes to molecular-targeted agents and immunotherapies, however, research has nailed down some basic strategies.

Molecular-Targeted Therapies
- **Small molecule binding blocks intracellular signaling following the binding of a natural ligand to a receptor.**
- **Signaling pathway is activated by another means, downstream of the blocked receptor.**
- **Drug cannot target cells of a different type.**
- **Tumor cells can lose characteristics of their typical cell type and acquire characteristics of a different lineage that does not depend on signaling blocked by the cancer drug.**

Immunotherapies
- **Immune signals trigger tumor cell apoptosis.**
- **Tumor cells do not induce apoptosis.**
- **Mutations can render tumor cells less recognizable to the immune system or less responsive to molecular signals from immune cells.**
- **Mutations and other changes alter the target protein. These can include altered splicing of the tumor target, which blocks recognition by the engineered T cell.**

Small molecule binding blocks intracellular signaling following the binding of a natural ligand to a receptor.

Signaling pathway is activated by another means, downstream of the blocked receptor.

Drug cannot target cells of a different type.

Tumor cells can lose characteristics of their typical cell type and acquire characteristics of a different lineage that does not depend on signaling blocked by the cancer drug.

Immune signals trigger tumor cell apoptosis.

Tumor cells do not induce apoptosis.

Mutations can render tumor cells less recognizable to the immune system or less responsive to molecular signals from immune cells.

Mutations and other changes alter the target protein. These can include altered splicing of the tumor target, which blocks recognition by the engineered T cell.

Cell type A

Cell type B

Leukemia cell

Engineered receptor

CD19

Engineered receptor

CAR T cell

T cell remains dormant.

T cell is activated to attack the tumor.

© NIRJA DESAI