ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag alternative splicing culture cell molecular biology developmental biology neuroscience

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Alternative Splicing Goes Mainstream
Sam Jaffe | Dec 14, 2003 | 10 min read
In eukaryotic genetics, the one-gene/one-protein concept has, for the most part, breathed its last. Researchers have rallied behind mechanisms such as alternative splicing, which may allow a lowly 30,000-gene genome to produce the dizzying variety of proteins that some believe is necessary to produce beings as complex as humans. Alternative splicing--the post-transcriptional editing process that can result in various mRNAs--was previously seen as an interesting but relatively uncommon sidesh
Antibody Alternatives
Paul Ko Ferrigno and Jane McLeod | Feb 1, 2016 | 10+ min read
Nucleic acid aptamers and protein scaffolds could change the way researchers study biological processes and treat disease.
On the left is a normally developing mouse embryo, on the right is a slightly larger mouse embryo that also contains horse cells that glow green.
Chimera research opens new doors to understanding and treating disease
Hannah Thomasy, PhD, Drug Discovery News | Aug 9, 2023 | 10 min read
Animals with human cells could provide donor organs or help us understand neuropsychiatric disorders.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
Can Single Cells Learn?
Catherine Offord | May 1, 2021 | 10+ min read
A controversial idea from the mid-20th century is attracting renewed attention from researchers developing theories for how cognition arises with or without a brain.
Conceptual image showing molecules making up a brain shape
The Noncoding Regulators of the Brain
Christie Wilcox, PhD | Sep 12, 2022 | 10+ min read
Noncoding RNAs are proving to be critical players in the evolution of brain anatomy and cognitive complexity.
Contributors
The Scientist | Jan 13, 2020 | 4 min read
Meet some of the people featured in the January/February 2020 issue of The Scientist.
Debate Over Stem Cell Origins Continues
Ricki Lewis | May 26, 2002 | 7 min read
In science, things are not always as they seem. So it is for transdifferentiation, the apparent interconvertibility of certain specialized cell types and an underlying theme at a symposium on stem cell biology and applications at the recent annual meeting of the American Association for Cancer Research (AACR) in San Francisco. "For the past three years, people have been saying that hematopoietic [blood-forming] stem cells can become just about any tissue, challenging the paradigm that there are

Run a Search

ADVERTISEMENT