ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag radiation culture genetics genomics immunology

Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Making Things Grow: Insect Cells, Stem Cells, and Primary Cell Lines All Pose Challenges for Cell Culturists
Laura Defrancesco | Jun 21, 1998 | 5 min read
Date: June 22, 1998 Insect Cell Culture Media, Suppliers of Primary Cell Culture Media Advantages for Protein Expression Studies Since the mid-1950s cultures of insects--cockroaches, fruit flies, and leafhoppers, to name a few--have been the object of quiet study by physiologists and cell biologists. But along came genetic engineering and suddenly insect cultures have been put in the spotlight since they provide advantages over both bacterial and mammalian systems for recombinant protein prod
Top 10 Innovations 2013
The Scientist | Dec 1, 2013 | 10+ min read
The Scientist’s annual competition uncovered a bonanza of interesting technologies that made their way onto the market and into labs this year.
Deploying the Body’s Army
Jamie Green and Charlotte Ariyan | Apr 1, 2014 | 10+ min read
Using patients’ own immune systems to fight cancer
The Rodent Wars: Is a Rat Just a Big Mouse?
Ricki Lewis | Jul 4, 1999 | 5 min read
Sometimes it seems as if genome projects are cropping up everywhere.1 But until costs come down, limited resources are being largely concentrated into what Joseph Nadeau, professor of genetics at Case Western Reserve University School of Medicine, calls "the genome seven," an apples-and-oranges list of viruses, bacteria, fungi, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and mouse, with Homo sapiens in its own category.2 Researchers widely acknowledge that in the rod
Nonradioactive Probes Protect Scientists And Environment
Holly Ahern | Apr 29, 1990 | 5 min read
For many years, geneticists determined the genetic makeup of organisms by examining the physical characteristics of their offspring. But with the discovery of the structure of the DNA double helix, first published by James D. Watson and Francis H.C. Crick in 1953 (Nature, 171:964-7), the science of genetics was forever changed. Scientists soon developed techniques to study the genetic message found in all living cells at the molecular level. One of most important of these methods was the use of
2020 Top 10 Innovations
The Scientist | Dec 1, 2020 | 10+ min read
From a rapid molecular test for COVID-19 to tools that can characterize the antibodies produced in the plasma of patients recovering from the disease, this year’s winners reflect the research community’s shared focus in a challenging year.
Switching Fields: The Key To Success For Some Scientists
Suzanne Hagan | Dec 9, 1990 | 8 min read
When Gilbert H. Nussbaum treats his cancer patients, he's well aware that they're running out of hope: They've already undergone chemotherapy or surgery, but their tumors have recurred. Nussbaum administers hyperthermia to these desperately ill patients, searing their tumors with intense heat. Yet Nussbaum is not a physician. He's a radiation physicist at Mallinckrodt Institute of Radiology in St. Louis. He got his professional start as an atomic physicist at the University of Tennessee, Knoxvi
Antibody Drug Development: On Target
Deborah Fitzgerald | Nov 16, 2003 | 9 min read
Courtesy of Abbott Laboratories  BETTER LIVING THROUGH IMMUNOLOGY: Though the exact cause of rheumatoid arthritis (RA) is unknown, people suffering from the disease have an excess of tumor necrosis factor alpha (TNF-a) that accumulates in their joints. Abbott Laboratories' Humira, a humanized monoclonal antibody that targets TNF-a, helps prevent the inflammation characteristic of RA and inhibits the progression of structural joint damage. As soon as Köhler and Milstein described hyb
Cell Death Processes Are Reversible
Charles Q. Choi | Feb 1, 2019 | 10+ min read
Molecular programs can rescue cells already engaged in the process of apoptosis or other forms of programmed cell death.

Run a Search

ADVERTISEMENT