ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag whole genome sequencing developmental biology culture evolution cell molecular biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
A reticulated giraffe in Samburu National Park, Kenya
Whole-Genome Data Point to Four Species of Giraffe
Ruth Williams | May 6, 2021 | 4 min read
The genome sequences of 51 giraffes from all over Africa contribute to the latest attempt in an ongoing pursuit to pin down a species number.
A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
A fresh, peeled lychee fruit held above a harvest of fresh lychees
Genome Spotlight: Lychee (Litchi chinensis)
Christie Wilcox, PhD | Jan 27, 2022 | 3 min read
Whole genome sequences reveal multiple domestications of this agriculturally important tree and may hold the secrets to producing the sweet fruit year round.
The Evolution of Drug Resistance
Ruth Williams | Dec 18, 2011 | 3 min read
Researchers use whole-genome sequencing to keep tabs on the development of antibiotic resistance in bacteria.
Biology's Blockbuster: Visualizing Genetic Variations
Kelli Miller | Feb 17, 2002 | 3 min read
They say timing is everything, and when it comes to cancer that's especially true. Human cells grow and divide every 24 hours. But in a fraction of a second, an error can occur in the copying of the human genome. Spotting precisely when that error happens is key to understanding, and possibly preventing, the development of cancer. Traditional cell cycle analysis involves staining samples taken at random intervals. But these snapshots don't tell the whole story. To see exactly what takes place ea

Run a Search

ADVERTISEMENT