ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag cell biology ecology cell molecular biology evolution

Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Molecular Biology
The Scientist Staff | Aug 22, 1993 | 2 min read
M. Leid, P. Kastner, R. Lyons, et al., "Purification, cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently," Cell, 68:377-95, 1992. Mark Leid (Oregon State University, Corvallis): "The diverse effects of retinoic acid (RA) on development, cellular growth and differentiation, and homeostasis are mediated by two families of RA receptors that arose independently during evolution and belong to the steroid/thyroid hormone super
Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
Molecular Biology
The Scientist Staff | Mar 1, 1992 | 2 min read
D.W. Nebert, D.R. Nelson, M.J. Coon, R.W. Estabrook, et al., "The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature," DNA and Cell Biology, 10:1-14, 1991. Daniel W. Nebert (University of Cincinnati Medical Center): "This review is the third in a series of comprehensive, up- to-date compilations of data about members of the large cytochrome P450 gene superfamily. It serves to organize a large--and growing--body of sequencing and mapping data on 154 P450 genes
MOLECULAR BIOLOGY
Paris | Jul 19, 1992 | 1 min read
Michel Philippe (Universite de Rennes, Rennes Cédex, France): "In yeast, two critical points of the cell cycle (Start and G1/S) are regulated by the same protein. This protein, called p34cdc2, is coded by the genes cdc2 in Schizzosaccharomyces pombe and CDC28 in Saccharomyces cerevisiae. By complementation of yeast mutants, proteins from higher eucaryotes homologous to cdc2 have been cloned. Moreover, p34cdc2 has been shown to be one of the main components of the well-known M-phase promotin
Cell Biology
The Scientist Staff | Apr 1, 1991 | 1 min read
F.-U. Hartl, W. Neupert, "Protein sorting to mitochondria: evolutionary conservations of folding and assembly," Science, 247:930-38, 1990. Franz-Ulrich Hartl (University of Munich, Germany): "In this paper we summarize recent progress in understanding the principles of intracellular protein sorting to mitochondria. These `cells' within cells represent an attractive model system for studies of the membrane translocation and assembly of proteins. Mitochondria are derived from endosymbiotic bac
DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
Yeast Made to Harvest Light Hint at Evolution’s Past
Kamal Nahas, PhD | Feb 21, 2024 | 6 min read
Scientists transferred light-harvesting proteins into yeast for the first time, shining a light on the past lives of eukaryotic cells.

Run a Search

ADVERTISEMENT