ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag time lapse imaging developmental biology microbiology evolution

Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
An illustration of green bacteria floating above neutral-colored intestinal villi
The Inside Guide: The Gut Microbiome’s Role in Host Evolution
Catherine Offord | Jul 1, 2021 | 10+ min read
Bacteria that live in the digestive tracts of animals may influence the adaptive trajectories of their hosts.
Monitoring Mutations with Microfluidics
Ruth Williams | Mar 15, 2018 | 3 min read
A device dubbed the “mother machine” enables real-time observation of mutagenesis in single bacterial cells.  
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Genomic Methylation Collector
Beth Marie Mole | Oct 21, 2012 | 2 min read
A parasitic worm accumulates epigenetic DNA tags over its lifetime.  
Contributors
The Scientist | Jun 1, 2020 | 3 min read
Meet some of the people featured in the June 2020 issue of The Scientist.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Keeping Time with Drosophila
Laura Bonetta | Feb 3, 2002 | 10 min read
Circadian clocks—the biological timekeepers that operate on a daily cycle—keep virtually every living creature in tune with its environment. These internal clocks regulate a wide range of fundamental biological processes, including movement, smell, sleep, mating, and feeding. A true circadian clock is endogenous; that is, it keeps time even in the absence of external cues. The clock can, however, be reset, or entrained, by daylight, allowing the synchronization of circadian rhythms t

Run a Search

ADVERTISEMENT