ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag quantitative pcr developmental biology genetics genomics culture microbiology

Molecule of DNA forming inside the test tube equipment.3d rendering,conceptual image.
EvaGreen® Dye: The Swiss Army Knife of qPCR
Biotium | Mar 1, 2024 | 7 min read
A green fluorescent dye with a novel DNA binding mechanism improves signal-to-noise in different DNA amplification assays.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
The Great Big Clean-Up
Kerry Grens | Sep 1, 2015 | 10+ min read
From tossing out cross-contaminated cell lines to flagging genomic misnomers, a push is on to tidy up biomedical research.
PCR Primed To Spur Chain Of Applications
Holly Ahern | Jun 25, 1995 | 10+ min read
What would you do if your research interests revolved around obtaining DNA from a bacterium preserved for millions of years in the gut of a bee stuck in amber, matching up a murderer to crime- scene blood half a century old, or cloning genes from a 1,000- year-old mummy? Most scientists would first consider PCR--the polymerase chain reaction--as a technique for approaching problems such as these. With PCR, minute quantities of nucleic acids can be amplified millions of times into sufficient qua
Prospecting for Gold in Genome Gulch
Amy Adams | Apr 14, 2002 | 9 min read
The human genome is much like the American West of the 1850s: Everyone wants a piece of the pie. Similar to gold prospectors of 150 years ago, biotech and pharmaceutical companies, and even universities, are frantically searching for the nuggets of gold that will help them find the mother lode—a gene whose function is sufficiently marketable to make all of the preliminary research worthwhile. Companies that do strike gold get to introduce new classes of drugs to the market. Others hope to
Epigenetics: Genome, Meet Your Environment
Leslie Pray | Jul 4, 2004 | 10+ min read
©Mehau Kulyk/Photo Researchers, IncToward the end of World War II, a German-imposed food embargo in western Holland – a densely populated area already suffering from scarce food supplies, ruined agricultural lands, and the onset of an unusually harsh winter – led to the death by starvation of some 30,000 people. Detailed birth records collected during that so-called Dutch Hunger Winter have provided scientists with useful data for analyzing the long-term health effects of prenat
Array of Options
Jorge Cortese | May 28, 2000 | 10 min read
Instrumentation for Microarray Production and Analysis - Part 1 Instrumentation for Microarray Production and Analysis - Part 2 Nanogen's NanoChip™ Cartridge Today's molecular biology era can be defined by the dictum, "So many genes, so little time," and technologies for gathering genetic information are gaining speed. DNA microarrays are one of the most promising answers to that cry. DNA microarrays are glass microslides or nylon membranes containing DNA samples (genomic DNA, cDNA,
Top Ten Innovations 2011
The Scientist | Jan 1, 2012 | 10+ min read
Our list of the best and brightest products that 2011 had to offer the life scientist
The Rodent Wars: Is a Rat Just a Big Mouse?
Ricki Lewis | Jul 4, 1999 | 5 min read
Sometimes it seems as if genome projects are cropping up everywhere.1 But until costs come down, limited resources are being largely concentrated into what Joseph Nadeau, professor of genetics at Case Western Reserve University School of Medicine, calls "the genome seven," an apples-and-oranges list of viruses, bacteria, fungi, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and mouse, with Homo sapiens in its own category.2 Researchers widely acknowledge that in the rod
Telomere Without End, Amen: Looking Into Longevity with Telomere Detection Kits
Laura Defrancesco | Mar 29, 1998 | 10 min read
Date: March 30, 1998 Author: Laura DeFrancesco T he excitement over telomerase continues to mount as evidence accumulates that makes the connection between telomere length and cell lifespan likely to be more than a coincidence. The most recent findings show that the age span of cultured cells, normally limited to around 50 cell doublings--the so-called Hayflick limit, named for the scientist who first observed that the lifespan of cultured cells was finite--can be more than doubled by transfec

Run a Search

ADVERTISEMENT