ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag government developmental biology genetics genomics

2022 Top 10 Innovations 
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
Advances in the functional characterization of newly discovered microproteins hint at their diverse roles  in health and disease
The Dark Matter of the Human Proteome
Annie Rathore | Apr 1, 2019 | 10 min read
Advances in the functional characterization of newly discovered microproteins hint at diverse roles in health and disease.
Stamping Out Science, 1948
Catherine Offord | May 1, 2021 | 4 min read
Trofim Lysenko’s attacks on geneticists had long-term effects on Russian science and scientists, despite a lack of evidence to support his beliefs about biological inheritance.
illustration of a mitochondrian inside a cell
Could Dad’s Mitochondrial DNA Benefit Hybrids?
Alejandra Manjarrez, PhD | Jan 20, 2022 | 7 min read
Studies have found that organisms can inherit mitochondria from male parents in rare instances, and both theoretical and experimental work hint that this biparental inheritance is more than just a fluke.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Siobhán Brady Uses Big Data to Investigate Plant Development
Shawna Williams | Feb 1, 2021 | 3 min read
The University of California, Davis, professor is a pioneer in teasing apart the changes in gene expression that drive root development.
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
Sequencing Stakes: Celera Genomics Carves Its Niche
Ricki Lewis | Jul 18, 1999 | 8 min read
J. Craig Venter is no stranger to contradiction and controversy. He seems to thrive on it. In 1991, when the National Institutes of Health was haggling over patenting expressed sequence tags (ESTs)--a shortcut to identifying protein-encoding genes--Venter the inventor accepted a private offer to found The Institute for Genomic Research (TIGR) in Rockville, Md. TIGR would discover ESTs and give most of them to a commercial sibling, Human Genome Sciences (HGS), to market. ESTs are now a standard
Genetic Testing's Political Implications Must Be Addressed
Dan Burk | Jul 20, 1997 | 6 min read
The recent public apology by President Clinton on behalf of the United States government to survivors of the Tuskegee syphilis experiments was intended to close the door on one of the most scandalous instances of officially sanctioned scientific misconduct in the annals of biomedical research. Yet, while the apology may bring closure to the particular incident, it stands as a stark reminder of the history that has led many minorities to distrust supposedly objective scientific research. Betraye
Genome Economy
Ricki Lewis | Jun 10, 2001 | 10 min read
The Human Genome Project's discovery1 that the human body runs on an instruction manual of a mere 35,000 or so genes--compared to the worm's 19,000, the fruit fly's 13,000, and the tiny mustard relative Arabidopsis thaliana's 25,000--placed humanity on an even playing field with these other, supposedly simpler, organisms. It was a humbling experience, but humility quickly gave way to awe with the realization that the human genome might encode 100,000 to 200,000 proteins. Scientists base this num

Run a Search

ADVERTISEMENT