ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag double helix cell molecular biology evolution developmental biology

A nude (hairless) mouse, typically used in biomedical and drug discovery research methods that rely on immunodeficient mouse strains.
Brush Up: Humanized Mice: More than the Sum of Their Parts
Deanna MacNeil, PhD | Aug 31, 2022 | 5 min read
Scientists study human health in vivo with modified mice that molecularly mimic human biology.
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
DNA’s Coding Power Doubled
Ruth Williams | Feb 21, 2019 | 3 min read
All life on Earth uses a genetic code based on four nucleotides. Now, scientists have created one with eight.
From the Ground Up
Anna Azvolinsky | Feb 1, 2017 | 8 min read
Instrumental in launching Arabidopsis thaliana as a model system, Elliot Meyerowitz has since driven the use of computational modeling to study developmental biology.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Evolution of science
Lauren Urban | May 1, 2010 | 4 min read
By Lauren Urban Evolution of science Science is made up of cliques. Throughout Alex Shneider’s career, he has noticed certain people drawn to certain types of science, and certain types of grant proposals always being funded. Shneider, the founder and CEO of Cure Lab, a vaccine biotech based in Massachusetts, came up with a theory to explain why these cliques occur. At first, it wasn’t too popular. Shneider concluded that a certain type
Building Nanoscale Structures with DNA
Arun Richard Chandrasekaran | Jul 16, 2017 | 10+ min read
The versatility of geometric shapes made from the nucleic acid are proving useful in a wide variety of fields from molecular computation to biology to medicine.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo
Master of the Cell
Judy Lieberman | Apr 1, 2010 | 10+ min read
By Judy Lieberman Master of the Cell RNA interference, with its powerful promise of therapy for many diseases, may also act as a master regulator of most—if not all—cellular processes. RNA silencing. Computer artwork showing a length of RNA (yellow with red rings) bound to an RNA-induced silencing complex (RISC). © Medi-Mation Ltd / Photo Researchers, Inc. ne of the biggest surprises in biology in the past d
Nonradioactive Probes Protect Scientists And Environment
Holly Ahern | Apr 29, 1990 | 5 min read
For many years, geneticists determined the genetic makeup of organisms by examining the physical characteristics of their offspring. But with the discovery of the structure of the DNA double helix, first published by James D. Watson and Francis H.C. Crick in 1953 (Nature, 171:964-7), the science of genetics was forever changed. Scientists soon developed techniques to study the genetic message found in all living cells at the molecular level. One of most important of these methods was the use of

Run a Search

ADVERTISEMENT