ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag patient data developmental biology cell molecular biology evolution

Developmental Biology
The Scientist Staff | Nov 13, 1994 | 2 min read
K.G. Peters, D. Ornitz, S. Werner, L. Williams, "Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis," Developmental Biology, 155:423-30, 1993. Kevin G. Peters (Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, N.C.): "Members of the fibroblast growth factor (FGF) family are powerful regulators of cell growth and differentiation that stimulate cells by activating spe
Developmental Biology
The Scientist Staff | Nov 13, 1994 | 2 min read
K.G. Peters, D. Ornitz, S. Werner, L. Williams, "Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis," Developmental Biology, 155:423-30, 1993. Kevin G. Peters (Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, N.C.): "Members of the fibroblast growth factor (FGF) family are powerful regulators of cell growth and differentiation that stimulate cells by activating spe
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
A Periodic Table for Biology
John Torday | Jun 20, 2004 | 5 min read
COOPERATIVE CELLS:Courtesy of Michael CarrollThe evolution of complex biologic organisms began with the symbiotic relationship between pro- and eukaryotes (I). This relationship gave rise to mitochondria (II), and the resulting diversity of unicellular organisms (III) led to their metabolic cooperativity (IV) mediated by ligand-receptor interactions and cell-cell signaling. Natural selection generated an increasing complexity (V). Failed homeostatic signaling (VI) recapitulates hylogeny/ontogeny
Researchers CHOOSE Organoids to Investigate Neurodevelopment
Deanna MacNeil, PhD | Jan 29, 2024 | 4 min read
A 3D variation of pooled CRISPR screens could connect the dots between autism spectrum disorder genetics and cell fate pathways in the developing brain.
The figure shows two waves made of DNA double helixes representing gene expression changes in the malaria parasite and its human host. These changes reveal a synchronization between parasite and host.
Malaria Parasites Sync with Hosts’ Molecular Rhythms
Mariella Bodemeier Loayza Careaga, PhD | Sep 1, 2023 | 2 min read
Evidence of malaria parasites aligning with their human hosts may pave the way for new antimalarial agents.
Environmental Health Institute Blends Toxicology And Molecular Biology
Karen Young Kreeger | May 1, 1995 | 9 min read
Situated equidistant from Raleigh, Durham, and Chapel Hill, N.C.--smack in the middle of the Research Triangle--sits the only National Institutes of Health institutional campus outside of the Washington, D.C., Beltway. The National Institute of Environmental Health Sciences (NIEHS) is currently responsible for nearly 50 percent of all federally funded research on such subjects. It commands a diverse research agenda that covers populations and geographical boundaries far beyond the triangle or t
Selling Systems Biology
Brendan Borrell | Aug 1, 2007 | 10+ min read
Selling Systems Biology Can this still-unproven (and much-hyped) field revolutionize drug discovery? By Brendan Borrell ARTICLE EXTRAS 1,2 suggested that the drug works primarily in patients with mutations in the ErbB1 epidermal growth factor receptor. The inner workings of the ErbB receptor family, with its sprawling pathways and multiple phosphatases, had long been a headache for drug makers. That complexity showed itself in this instance, too - sometimes the drug wa

Run a Search

ADVERTISEMENT