ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag douglas prasher genetics genomics developmental biology

Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
Advances in the functional characterization of newly discovered microproteins hint at their diverse roles  in health and disease
The Dark Matter of the Human Proteome
Annie Rathore | Apr 1, 2019 | 10 min read
Advances in the functional characterization of newly discovered microproteins hint at diverse roles in health and disease.
From the Ground Up
Anna Azvolinsky | Feb 1, 2017 | 8 min read
Instrumental in launching Arabidopsis thaliana as a model system, Elliot Meyerowitz has since driven the use of computational modeling to study developmental biology.
N.Y. Panel Explores Genomics Issues
Douglas Steinberg | Oct 15, 2000 | 3 min read
What can people expect from biotechnology and genomics? Ten luminaries from the biomedical arena, law, and journalism grappled with issues related to that question at the City University of New York's Graduate Center on Sept. 20. In attendance was an audience of 350 whose research, medical, and counseling careers could hinge on how such issues are resolved. Syracuse University's Gene Media Forum (www.genemedia.org) sponsored the event. The recurring theme was biological predictability. Er
NIH Jumps Into Genetic Variation Research
Douglas Steinberg | Jan 18, 1998 | 9 min read
The field is given a boost by a widening of focus at the institutes as well as a report praising a major initiative. During the brief earthly tenure of the species Homo sapiens, the human genome seems to have accumulated just the right amount of variation to suit the purposes of geneticists. Single-nucleotide polymorphisms (SNPs), the DNA bases that vary systematically between subpopulations, are common enough to serve usefully as chromosomal markers but not so common as to make genetic analys
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Genome Economy
Ricki Lewis | Jun 10, 2001 | 10 min read
The Human Genome Project's discovery1 that the human body runs on an instruction manual of a mere 35,000 or so genes--compared to the worm's 19,000, the fruit fly's 13,000, and the tiny mustard relative Arabidopsis thaliana's 25,000--placed humanity on an even playing field with these other, supposedly simpler, organisms. It was a humbling experience, but humility quickly gave way to awe with the realization that the human genome might encode 100,000 to 200,000 proteins. Scientists base this num
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
Will Genomics Spoil Gene Ownership?
Douglas Steinberg | Sep 3, 2000 | 8 min read
Consider a scenario for the year 2002: Using commercially available software, bioprospector "Craig Collins" spends a day scavenging the Human Genome Project (HGP) database for the alternatively spliced genes prized by Wall Street. He enters the sequences of several candidate genes into a software package that prints out the likely functions of their protein products. One protein looks like it could be pharmaceutical paydirt, so he isolates the corresponding cDNA, inserts it into a vector, then
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c

Run a Search

ADVERTISEMENT