ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag histone methylation culture disease medicine developmental biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Researchers Engineer Epigenome Editors to Study How Gene Expression Affects Disease
Ashley Yeager | Jan 1, 2019 | 7 min read
Using CRISPR and other tools, scientists are modifying DNA methylation, histone marks, and other modifiers of gene expression to understand how they affect health and disease.
Valerie Arboleda Uses Big Data to Unravel the Biology of a Rare Disease
Shawna Williams | May 1, 2018 | 3 min read
The UCLA geneticist examines how defects in a histone protein lead to symptoms throughout the body.
Methylation Maestro
Anna Azvolinsky | Jan 1, 2017 | 9 min read
After initially discovering that DNA methylation represses transcription, Howard Cedar continues to explore how the epigenetic mark regulates gene expression.
3d rendered medically accurate illustration of a human embryo anatomy
The Ephemeral Life of the Placenta
Danielle Gerhard, PhD | Dec 4, 2023 | 10+ min read
Recent advances in modeling the human placenta, the least understood organ, may inform placental disorders like preeclampsia.
Illustration showing two hands join, father or mother with child
Does Human Epigenetic Inheritance Deserve a Closer Look?
Catherine Offord | Apr 4, 2022 | 10+ min read
The concept of epigenetic inheritance has long been controversial. Some researchers hope that new data on cross-generational effects of environmental exposures will help settle the debate.
Guts and Glory
Anna Azvolinsky | Apr 1, 2016 | 9 min read
An open mind and collaborative spirit have taken Hans Clevers on a journey from medicine to developmental biology, gastroenterology, cancer, and stem cells.
High-Throughput Epigenetics Analyses
Jyoti Madhusoodanan | Jan 1, 2018 | 7 min read
Emerging technologies help researchers draw mechanistic links between metabolism and epigenetic modification of DNA.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
Methylation: Gene Expression at the Right Place and Right Time
Nadia Halim | Dec 5, 1999 | 7 min read
Courtesy of Richard Roberts, New England BiolabsModel methylation reaction: Cytosine nucleotide (red) is flipped out of the DNA double helix by a methyltransferase (white), so it can be methylated. The end product after the methyl group has been transferred to the DNA is pictured in green. A tenuous link between DNA methylation and development has existed for several years. Now findings substantiate the connection. Researchers have found the first human diseases caused by defects in the DNA meth

Run a Search

ADVERTISEMENT