ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag epigenetic regulation cell molecular biology immunology developmental biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Top 7 in developmental biology
Bob Grant | Oct 4, 2010 | 3 min read
Check out the hottest papers in developmental biology and related fields, as ranked by F1000
Top 7 in developmental biology
Bob Grant | Dec 17, 2010 | 3 min read
A snapshot of the most highly ranked articles in developmental biology, from Faculty of 1000
Immunology: Highlights From A Hot Biological Field
Scott Veggeberg | Mar 21, 1993 | 6 min read
Some of the most influential papers in 1992, according to data provided by the Philadelphia-based Institute for Scientific Information, were in immunology. This is not surprising, given the field's applications in stemming AIDS, cancer, and other pressing diseases. The most cited paper published within the last two years is from the Max Planck Institute for Biology in Tbingen, Germany (K. Falk, et al., Nature, 351:290, 1991). This paper, which by the end of February 1993 had been referred to i
Guts and Glory
Anna Azvolinsky | Apr 1, 2016 | 9 min read
An open mind and collaborative spirit have taken Hans Clevers on a journey from medicine to developmental biology, gastroenterology, cancer, and stem cells.
Gia Voeltz: Cellular Cartographer
Karen Zusi | Dec 1, 2015 | 3 min read
Associate Professor, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder. Age: 43
Epigenetics of Trained Innate Immunity
Ruth Williams | Sep 25, 2014 | 3 min read
Documenting the epigenetic landscape of human innate immune cells reveals pathways essential for training macrophages.
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
A Periodic Table for Biology
John Torday | Jun 20, 2004 | 5 min read
COOPERATIVE CELLS:Courtesy of Michael CarrollThe evolution of complex biologic organisms began with the symbiotic relationship between pro- and eukaryotes (I). This relationship gave rise to mitochondria (II), and the resulting diversity of unicellular organisms (III) led to their metabolic cooperativity (IV) mediated by ligand-receptor interactions and cell-cell signaling. Natural selection generated an increasing complexity (V). Failed homeostatic signaling (VI) recapitulates hylogeny/ontogeny
Monoclonal Antibodies Find Utility In Cell Biology
Ricki Lewis | Dec 11, 1994 | 10+ min read
But, just as antibodies are finding increasing utility in cell biology, a new Food and Drug Administration classification for those products with clinical utility may affect researchers' access to the important technology (see accompanying story). Monoclonal History MAbs were born in 1975, when Georges Kohler and Cesar Milstein at the Medical Research Council Laboratories in Cambridge, England, fused two types of cells to form a hy

Run a Search

ADVERTISEMENT