ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag coronary heart disease evolution disease medicine genetics genomics culture neuroscience

On the left is a normally developing mouse embryo, on the right is a slightly larger mouse embryo that also contains horse cells that glow green.
Chimera research opens new doors to understanding and treating disease
Hannah Thomasy, PhD, Drug Discovery News | Aug 9, 2023 | 10 min read
Animals with human cells could provide donor organs or help us understand neuropsychiatric disorders.
Can Viruses in the Genome Cause Disease?
Katarina Zimmer | Jan 1, 2019 | 10+ min read
Clinical trials that target human endogenous retroviruses to treat multiple sclerosis, ALS, and other ailments are underway, but many questions remain about how these sequences may disrupt our biology.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
Conceptual image showing molecules making up a brain shape
The Noncoding Regulators of the Brain
Christie Wilcox, PhD | Sep 12, 2022 | 10+ min read
Noncoding RNAs are proving to be critical players in the evolution of brain anatomy and cognitive complexity.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Diseases by Design
Jennifer Fisher Wilson | Jun 1, 2003 | 6 min read
Jacob Halaska, ©Index Stock Imagery Researchers like mice. US government statistics reveal that the whiskered ones show up in 90% of all experiments. Mice come cheap, procreate often, and die fairly quickly. And although evolution separates mouse from human by an estimated 75 to 100 million years, biologically and genetically speaking, they share a lot; as much as 85% of the DNA in mice is the same in humans. The research ground that mice have domineered for a century, however, is reced
march 2019 the scientist profile
Master Decoder: A Profile of Kári Stefánsson
Anna Azvolinsky | Mar 1, 2019 | 9 min read
A neurologist by training, Stefánsson founded Iceland-based deCODE Genetics to explore what the human genome can tell us about disease and our species’ evolution.
Illustration showing a puzzle piece of DNA being removed
Large Scientific Collaborations Aim to Complete Human Genome
Brianna Chrisman and Jordan Eizenga | Sep 1, 2022 | 10+ min read
Thirty years out from the start of the Human Genome Project, researchers have finally finished sequencing the full 3 billion bases of a person’s genetic code. But even a complete reference genome has its shortcomings.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
Evolving heart
Elie Dolgin | Aug 1, 2009 | 3 min read
By Elie Dolgin Evolving heart In 1948, 5,209 residents of a medium-sized New England town signed up for what would become the longest-running, systematic medical study in the world. The Framingham Heart Study, as it was called, was the first to show that smoking, obesity, and high cholesterol all increased people’s chances of developing heart disease. Six decades on, it’s also the first multigenerational human study to reveal that

Run a Search

ADVERTISEMENT