ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag seminal fluid genetics genomics developmental biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Advances in the functional characterization of newly discovered microproteins hint at their diverse roles  in health and disease
The Dark Matter of the Human Proteome
Annie Rathore | Apr 1, 2019 | 10 min read
Advances in the functional characterization of newly discovered microproteins hint at diverse roles in health and disease.
The Biological Roots of Intelligence
Shawna Williams | Nov 1, 2018 | 10+ min read
Imaging, behavioral, and genetic data yield clues to what’s behind effective thinking.
A cockroach clings to the inside of a white mug.
Injecting Cockroaches with CRISPR Gene Edits Their Offspring
Sophie Fessl, PhD | May 25, 2022 | 4 min read
A new method has allowed researchers to conduct the first gene knock-out and knock-in edits on cockroaches and may extend to many other insects.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Ghosts in the Genome
Oliver J. Rando | Dec 1, 2015 | 10+ min read
How one generation’s experience can affect the next
The Genetics of Society
Claire Asher and Seirian Sumner | Jan 1, 2015 | 10 min read
Researchers aim to unravel the molecular mechanisms by which a single genotype gives rise to diverse castes in eusocial organisms.
A Periodic Table for Biology
John Torday | Jun 20, 2004 | 5 min read
COOPERATIVE CELLS:Courtesy of Michael CarrollThe evolution of complex biologic organisms began with the symbiotic relationship between pro- and eukaryotes (I). This relationship gave rise to mitochondria (II), and the resulting diversity of unicellular organisms (III) led to their metabolic cooperativity (IV) mediated by ligand-receptor interactions and cell-cell signaling. Natural selection generated an increasing complexity (V). Failed homeostatic signaling (VI) recapitulates hylogeny/ontogeny
Genetic Parasites and a Whole Lot More
Barry Palevitz | Oct 15, 2000 | 10+ min read
Photo: Ori Fragman, Hebrew University Hordeum spontaneum, the plant studied for BARE-1 retroelements. With genome sequences arriving almost as regularly as the morning paper, the public's attention is focused on genes--new genes to protect crops against pests; rogue genes that make bacteria resistant to antibiotics; faulty genes that, if fixed, could cure diseases such as muscular dystrophy. What many people don't realize is that genes account for only part of an organism's DNA, and in many c
CRISPR Can Track Cellular History of a Mammalian Embryo
Sukanya Charuchandra | Aug 10, 2018 | 2 min read
Researchers used the genome-editing technology to analyze the development of mouse tissues.

Run a Search

ADVERTISEMENT