ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag yeast genetics culture neuroscience

Yeast Made to Harvest Light Hint at Evolution’s Past
Kamal Nahas, PhD | Feb 21, 2024 | 6 min read
Scientists transferred light-harvesting proteins into yeast for the first time, shining a light on the past lives of eukaryotic cells.
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
Scanning electron micrograph (SEM) of the unicellular yeast Saccharomyces cerevisiae, known as Baker's or Brewer's yeast.
Yeast Models Provide New Insights into Neurodegenerative Diseases
Mahlon Collins | Oct 1, 2021 | 10+ min read
The single-celled fungus allows researchers to study Alzheimer’s, Parkinson’s, ALS and other brain diseases with unparalleled speed and scale.
Saccharomyces cerevisiae yeast, 3D illustration. Microscopic fungi, baker's or brewer's yeast, are used as probiotics to restore normal flora of intestine
Yeast “Mini Labs” Help Researchers Probe Histone Modifications
Amanda Heidt | Sep 1, 2021 | 3 min read
By harnessing a unique property of yeast, scientists can synthesize histones and the enzymes that modify these proteins, which spool DNA and influence gene expression.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
Microscopy image showing patches of magenta and green
Three Autism-Linked Genes Converge on Tweaks to Cells’ Timing
Angie Voyles Askham, Spectrum | Feb 3, 2022 | 3 min read
The genes are involved in pacing the development of inhibitory and excitatory neurons. An imbalance in these two types of signaling is thought to play a role in autism.
SYNGAP1 helps neurons eliminate old synapses and form new ones after a novel experience (left and center left)—a process weakened in mice missing a copy of the gene (center right and right).
Autism-Linked Gene SYNGAP1 Molds Synaptic Plasticity, Learning
Angie Voyles Askham, Spectrum | Oct 26, 2021 | 4 min read
The finding may help to explain why people with SYNGAP1 mutations tend to have learning difficulties and a high tolerance for pain.
A mutated cell with a spiky membrane
Mutations in Autism-Linked Gene Cause Membrane Mischief
Holly Barker, PhD, Spectrum | Jan 26, 2023 | 4 min read
Inactivating TAOK1 prompts tentacle-like protrusions to form all over a neuron’s surface, revealing the gene’s role in molding the membrane.
Contributors
Jef Akst and Katarina Zimmer | Jan 1, 2018 | 3 min read
Meet some of the people featured in the January 2018 issue of The Scientist.
A New Model of Yeast Aging
Hannah Waters | Nov 23, 2011 | 4 min read
New findings challenge long-held views about the mechanism yeast cells use to live forever.

Run a Search

ADVERTISEMENT