ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag disease medicine culture science publishing techniques cell molecular biology

Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
A close up of several modular puzzle pieces.
Making Connections: Click Chemistry and Bioorthogonal Chemistry
Deanna MacNeil, PhD | Feb 13, 2024 | 5 min read
Simple, quick, and modular reactions allow researchers to create useful molecular structures from a wide range of substrates.
3D illustration of damaged myelin sheath seen in demyelinating diseases such as multiple sclerosis.
Tracking Down Innate Immune Cells in Multiple Sclerosis
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 5 min read
A novel PET tracer targeting a receptor in myeloid cells can help monitor disease progression in a mouse model of multiple sclerosis.
A person moving the hands of a vintage clock backwards.
Synthetic Circuits Reveal the Key to Rewinding the Cellular Clock
Charlene Lancaster, PhD | Mar 12, 2024 | 4 min read
Using a circuit-based system, scientists determined the ideal transcription factor levels to promote the successful reprogramming of fibroblasts into induced pluripotent stem cells.
Cell And Tissue Culture Techniques A Combination Of Science And Art
Holly Ahern | Dec 10, 1995 | 10 min read
Science And Art Author: Holly Ahern Cells of all types -- from organisms as simple as bacteria to those as complex as humans -- can be removed from representative tissues and grown in a culture vessel, where they reproduce and perform the same biological functions as cells in their natural state. When human skin cells such as fibroblasts are grown in culture, for example, they attach to the culture vessel and form a layer, just as if they were forming a layer of skin. Cultured fibroblasts secre
dna microscopy visualization RNA cDNA mRNA transcripts cell biology
New Technique Maps RNAs in Cells Without a Microscope
Kerry Grens | Jun 20, 2019 | 1 min read
DNA microscopy pinpoints the locations of transcripts by laying a grid of tags over the molecules and labeling each connection.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.

Run a Search

ADVERTISEMENT