ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag flow cytometry pcr bioinformatics cell molecular biology disease medicine

No Mo’ Slow Flow
Jeffrey M. Perkel | Jan 1, 2012 | 7 min read
Tools and tricks for high-throughput flow cytometry
Molecular Multitasking
Carina Storrs | Aug 1, 2013 | 6 min read
Commercial kits use fluorescent beads to probe dozens of cytokines in one reaction.
Innovations Expand Lab Power, Uses Of PCR Technique
Ricki Lewis | Jul 25, 1993 | 8 min read
The gene amplification technique invented by genetics researcher Kary Mullis on a moonlit drive through the northern California hills a decade ago--the polymerase chain reaction (PCR)-- continues to revolutionize the life sciences. Uses in molecular biology research and in diagnostic tests are proliferating, and PCR is even bringing a new molecular approach to such fields as paleontology and epidemiology. The following companies are among those supplying PCR-related products for the resear
Monoclonal Antibodies Find Utility In Cell Biology
Ricki Lewis | Dec 11, 1994 | 10+ min read
But, just as antibodies are finding increasing utility in cell biology, a new Food and Drug Administration classification for those products with clinical utility may affect researchers' access to the important technology (see accompanying story). Monoclonal History MAbs were born in 1975, when Georges Kohler and Cesar Milstein at the Medical Research Council Laboratories in Cambridge, England, fused two types of cells to form a hy
Monoclonal Antibodies Find Utility In Cell Biology
Ricki Lewis | Dec 11, 1994 | 10+ min read
But, just as antibodies are finding increasing utility in cell biology, a new Food and Drug Administration classification for those products with clinical utility may affect researchers' access to the important technology (see accompanying story). Monoclonal History MAbs were born in 1975, when Georges Kohler and Cesar Milstein at the Medical Research Council Laboratories in Cambridge, England, fused two types of cells to form a hy
Going Their Separate Ways: A Profile of Products for Cell Separation
Michelle Vettese-dadey | Sep 12, 1999 | 10+ min read
Date: September 13, 1999Cell Separation Products Magnetic Cell Separation Technologies that isolate rare cell types to high purity are essential to the cell biology researcher. Understanding cell developmental pathways becomes increasingly significant as diagnosis and treatment of disease turns more to the molecular level.1 This diagnosis of cell-related diseases requires methods for detection, isolation, and analysis of individual cells regardless of their frequency.2 The hematopoietic system
2020 Top 10 Innovations
The Scientist | Dec 1, 2020 | 10+ min read
From a rapid molecular test for COVID-19 to tools that can characterize the antibodies produced in the plasma of patients recovering from the disease, this year’s winners reflect the research community’s shared focus in a challenging year.
Integrating Multiple -Omics in Individual Cells
Sandeep Ravindran | Oct 1, 2018 | 8 min read
New techniques combine DNA, RNA, and protein information from single cells.
Creative Emulsification
Sabrina Richards | Nov 1, 2012 | 8 min read
Enhancing data collection from emulsion PCR reactions: three case studies
Recourse to Death
Michael Brush | Aug 20, 2000 | 10 min read
Manufactureres of Flow Cytometry Products for Apoptosis Detection To examine the causes of life, we must first have recourse to death," uttered Victor Frankenstein upon beginning his search for the source from "whence the principle of life proceeds" and ultimately creating his nameless monster. Frankenstein's real creator, 19-year-old Mary Shelley, probably had no idea when Frankenstein was first published in 1816 that her main character's motivation would eventually have real-life implication

Run a Search

ADVERTISEMENT