ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag e coli neuroimaging new species

bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
Electron Micrographs Get a Dash of Color
Ben Andrew Henry | Nov 3, 2016 | 4 min read
A new technique creates colorful stains that label proteins and cellular structures at higher resolution than ever before possible. 
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
High Fidelity PCR: Enhancing the Accuracy of DNA Amplification
Shane Beck | Jan 4, 1998 | 10 min read
Date: January 5, 1998 Chart 1, Chart 2 n the beginning there was Taq. Actually, there were others before Taq. There were precursory polymerases, such as that from E. coli, that lost their enzymatic activities at elevated temperatures. This shortfall made thermal cycling a time-consuming chore, with the necessity of adding new polymerase after each cycle. Then came the thermostable polymerases such as Taq DNA polymerase, which was isolated from the thermophilic, aerobic bacterium Thermus aquat
Fishing In A Molecular Sea
Alison Paladichuk | Jan 17, 1999 | 10+ min read
Date: January 18, 1999Labeling Kit Companies Labeling Kit Companies: Details In situ spatial localization of mRNA expressed only after ethylene treatment (left) compared to air grown seedlings used as a negative control (right). The RNA probe to the EIA0305 gene was labeled with fluorescein (NEL633) and visualized with NBT (Image courtesy of New England Nuclear) Remember the days when fishing for a sequence in the E. coli genome seemed like an overwhelming task? Somewhere along the way, it see
a microscope image of a rotifer
Bacterial Enzyme Keeps Rotifers’ Transposable Elements in Check
Christie Wilcox, PhD | Mar 3, 2022 | 5 min read
Jumping genes in bdelloid rotifers are tamped down by DNA methylation performed by an enzyme pilfered from bacteria roughly 60 million years ago, a study finds.
The Scientist Staff | Mar 29, 2024
A scanning electron micrograph of a coculture of E. coli and Acinetobacter baylyi. Nanotubes can be seen extending from the E. coli.
What’s the Deal with Bacterial Nanotubes?
Sruthi S. Balakrishnan | Jun 1, 2021 | 10+ min read
Several labs have reported the formation of bacterial nanotubes under different, often contrasting conditions. What are these structures and why are they so hard to reproduce?

Run a Search

ADVERTISEMENT