ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag microscopy rna tracking imaging microplate reader

CRISPR Can Tag RNA
Kerry Grens | Mar 21, 2016 | 1 min read
Modifications to the DNA-slicing program allow for monitoring the movement of messenger RNA.
Microplate Reader Madness
Tariq Malik | Nov 16, 2003 | 10 min read
Courtesy of Cellomics The ArrayScan VTI HCS Reader Microtiter plates have become standard consumables in both research and clinical laboratories. Also known as microwells and microplates, microtiter plates essentially are flat trays bearing a number of isolated reaction chambers, from six to 1,536, and arranged in a 3n x 2n array (e.g., for a 96-well plate, n=4). All the plates share a common footprint (approximately 128 x 86 mm) regardless of manufacturer and configuration, so that robot
2022 Top 10 Innovations 
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Ready, Set, Glow
Ruth Williams | Aug 1, 2018 | 3 min read
Tagging proteins with GFP-grabbing nanobodies enables instant tracking of the proteins’ dynamics in live cells.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
A scanning electron micrograph of a coculture of E. coli and Acinetobacter baylyi. Nanotubes can be seen extending from the E. coli.
What’s the Deal with Bacterial Nanotubes?
Sruthi S. Balakrishnan | Jun 1, 2021 | 10+ min read
Several labs have reported the formation of bacterial nanotubes under different, often contrasting conditions. What are these structures and why are they so hard to reproduce?
translation gene genetics ribosome enhancers knowable magazine
What Does It Look Like to “Turn On” a Gene?
Alla Katsnelson, Casey Rentz, and Knowable Magazine | May 3, 2019 | 8 min read
Only recently have scientists directly witnessed this most pivotal of events in biology, thanks to new technology that allows them to observe the process in living cells. It’s teaching them a lot.
Microarray Readers: Pushing the Envelope
Jorge Cortese | Dec 9, 2001 | 10 min read
To truly reap the benefits of the flood of information coming out of sequencing factories worldwide, investigators must move beyond the traditional notion of "one-gene, one-experiment," in favor of highly parallel, automation-friendly, and miniaturized assays. One such tool is the microarray--a matrix of biomaterials attached to a support such as glass or plastic.1-3 Using microarrays, scientists can perform hundreds or thousands of experiments in parallel, all thanks to a chip usually no bigge
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.

Run a Search

ADVERTISEMENT