ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag chemistry cell molecular biology disease medicine

A close up of several modular puzzle pieces.
Making Connections: Click Chemistry and Bioorthogonal Chemistry
Deanna MacNeil, PhD | Feb 13, 2024 | 5 min read
Simple, quick, and modular reactions allow researchers to create useful molecular structures from a wide range of substrates.
Infusion of Artificial Intelligence in Biology
Meenakshi Prabhune, PhD | Feb 23, 2024 | 10 min read
With deep learning methods revolutionizing life sciences, researchers bet on de novo proteins and cell mapping models to deliver customized precision medicines.
DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Glowing red DNA on bluish background
Redesigning Medicine Using Synthetic Biology
Alison Halliday, PhD, Technology Networks | Jun 21, 2023 | 5 min read
Drawing inspiration from nature, synthetic biology offers exciting opportunities to transform the future of medicine.
Molecular Biology
The Scientist Staff | Mar 3, 1991 | 1 min read
J.H. Exton, "Signaling through phosphatidylcholine breakdown," The Journal of Biological Chemistry, 265, 1-4, 5 January 1990. John H. Exton (Vanderbilt University School of Medicine, Nashville, Tenn.): "This article was designed to alert readers to the existence of what appears to be a novel cellular signaling system involving the breakdown of phosphatidylcholine to phosphatidic acid. It arose out of the realization that the accumulation of phosphatidic acid in stimulated cells could not be e
Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
Decoding the Cellular Secrets of the Endometrium 
Deanna MacNeil, PhD | Jan 16, 2024 | 3 min read
Endometrial organoids and single cell analyses helped uncover the molecular mechanisms of a rare uterine condition.
Molecular Biology
The Scientist Staff | Jan 6, 1991 | 1 min read
B. Berkhout, R.H. Silverman, K.-T. Jeang, "Tat trans-activates the human immunodeficiency virus through a nascent RNA target," Cell, 59, 273-82, 20 October 1989. Ben Berkhout (National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md.): "The unique feature of this study was the use of RNA-refolding mutagenesis. Rearrangement of RNA structures was first described by Charles Yanofsky [Stanford University] to explain the process of transcriptional attenuation ["Transcription atten
3D illustration of damaged myelin sheath seen in demyelinating diseases such as multiple sclerosis.
Tracking Down Innate Immune Cells in Multiple Sclerosis
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 5 min read
A novel PET tracer targeting a receptor in myeloid cells can help monitor disease progression in a mouse model of multiple sclerosis.

Run a Search

ADVERTISEMENT