ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag next gen sequencing neuroscience microbiology

Sons of Next Gen
Tia Ghose | Jun 1, 2012 | 8 min read
New innovations could bring tailored, fast, and cheap sequencing to the masses.
Haydeh Payami is wearing a purple dress and an orange and pink scarf and standing in front of a whiteboard.
A Microbial Link to Parkinson’s Disease
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 6 min read
Haydeh Payami helped uncover the genetic basis of Parkinson’s disease. Now, she hopes to find new ways to treat the disease by studying the gut microbiome.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Conceptual image of numbers
Is Your Brain Wired for Numbers?
Catherine Offord | Oct 1, 2021 | 10+ min read
Our perception of quantity, separate from counting or estimation of magnitude more generally, is foundational to human cognition, according to some neuroscientists.
Those We Lost in 2019
Ashley Yeager | Dec 30, 2019 | 6 min read
The scientific community said goodbye to Sydney Brenner, Paul Greengard, Patricia Bath, and a number of other leading researchers this year.
Top 10 Innovations 2013
The Scientist | Dec 1, 2013 | 10+ min read
The Scientist’s annual competition uncovered a bonanza of interesting technologies that made their way onto the market and into labs this year.
2020 Top 10 Innovations
The Scientist | Dec 1, 2020 | 10+ min read
From a rapid molecular test for COVID-19 to tools that can characterize the antibodies produced in the plasma of patients recovering from the disease, this year’s winners reflect the research community’s shared focus in a challenging year.
Researchers Blast Open Pathogen Genome
Barry Palevitz | Aug 18, 2002 | 6 min read
Image: Courtesy of Tim Elkins BRUTE FORCE: Remnant of an appressorium formed on Mylar. The appressorium produced a peg-like extension that penetrated the film, leaving a round hole. (Reprinted with permission, Annual Review of Microbiology, 50:491-512, 1996.) "The Lord shall smite thee with a consumption, and with a fever, and with an inflammation, and with an extreme burning, and with the sword, and with BLASTING, and with mildew; and they shall pursue thee until thou perish." Deuteronom
DNA Software Takes The Drudgery Out Of Molecular Biology
Ricki Lewis | Sep 15, 1991 | 8 min read
Author: RICKI LEWIS, p.23 It is expected to take some 15 years to determine the sequence of the 3 billion base pairs that make up the human genome--roughly 550,000 base pairs per day. An analytical task of this magnitude would have been unthinkable just a few years ago, but today's rapidly advancing computer technology has made the international effort to sequence the human genome possible. C.B.S. Scientific Co. Inc. P.O. Box 856 Del Mar, Calif. 92014 Phone: (619) 755-4959 Fax: (619) 755-
One Step Beyond: Going Beyond Genomics With Proteomics And Two-Dimensional Gel Technology
Laura Defrancesco | Jan 3, 1999 | 10+ min read
Proteomes and 2D Gel Apparatus Providers Big science has moved on to proteins. With the new brand of science termed proteomics--named by the Australians Marc Wilkins and Keith Williams to mean the "set of PROTEins encoded by the genOME"--the push is on around the globe to produce a complete description of a cell/tissue/organism in terms of the proteins produced. The challenge is all the greater because the expressed protein pattern changes with time and environment--responding to developmenta

Run a Search

ADVERTISEMENT