ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag rare diseases genetics genomics immunology neuroscience evolution

Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
On the left is a normally developing mouse embryo, on the right is a slightly larger mouse embryo that also contains horse cells that glow green.
Chimera research opens new doors to understanding and treating disease
Hannah Thomasy, PhD, Drug Discovery News | Aug 9, 2023 | 10 min read
Animals with human cells could provide donor organs or help us understand neuropsychiatric disorders.
Can Viruses in the Genome Cause Disease?
Katarina Zimmer | Jan 1, 2019 | 10+ min read
Clinical trials that target human endogenous retroviruses to treat multiple sclerosis, ALS, and other ailments are underway, but many questions remain about how these sequences may disrupt our biology.
Layered visual representation of multiomics
Integrate and Innovate with NGS and Multiomics
The Scientist and Illumina | May 4, 2023 | 6 min read
Researchers across disciplines combine layers of discovery obtained with accessible NGS-based multiomics approaches.
The Breakthrough Prize ?Trophy
2024 Breakthrough Prizes in Life Sciences
Danielle Gerhard, PhD | Sep 14, 2023 | 10 min read
This year’s Breakthrough Prizes honor advances in CAR T cancer therapies, cystic fibrosis, and Parkinson’s disease.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Illustration showing a puzzle piece of DNA being removed
Large Scientific Collaborations Aim to Complete Human Genome
Brianna Chrisman and Jordan Eizenga | Sep 1, 2022 | 10+ min read
Thirty years out from the start of the Human Genome Project, researchers have finally finished sequencing the full 3 billion bases of a person’s genetic code. But even a complete reference genome has its shortcomings.
Conceptual image of a person's brain with a cluster of cells inside
Is the Immune System to Blame for Schizophrenia?
Diana Kwon | Apr 18, 2022 | 10+ min read
Several lines of evidence suggest that targeting the body’s defense pathways might help treat a subset of people with the psychiatric disorder. But many open questions remain.
Scanning electron micrograph (SEM) of the unicellular yeast Saccharomyces cerevisiae, known as Baker's or Brewer's yeast.
Yeast Models Provide New Insights into Neurodegenerative Diseases
Mahlon Collins | Oct 1, 2021 | 10+ min read
The single-celled fungus allows researchers to study Alzheimer’s, Parkinson’s, ALS and other brain diseases with unparalleled speed and scale.
Genome Evolution: First, a Bang Then, a Shuffle
Ricki Lewis | Jan 26, 2003 | 8 min read
Courtesy of Peggy Greb, ARS Photo Library Picture an imperfect hall of mirrors, with gene sequences reflecting wildly: That's the human genome. The duplications that riddle the genome range greatly in size, clustered in some areas yet absent in others, residing in gene jungles as well as within vast expanses of seemingly genetic gibberish. And in their organization lie clues to genome origins. "We've known for some time that duplications are the primary force for genes and genomes to evolve ov

Run a Search

ADVERTISEMENT