ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag proteins cell molecular biology microbiology immunology ecology

Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
A needle drawing up fluid from an unlabeled vial.
Cancer Vaccination as a Promising New Treatment Against Tumors
Shelby Bradford, PhD | Mar 15, 2024 | 10+ min read
Vaccination has beaten back infections for more than a century. Now, it may be the next big step in battling cancer.
Bugs as Drugs to Boost Cancer Therapy
Danielle Gerhard, PhD | Jan 18, 2024 | 7 min read
Bioengineered bacteria sneak past solid tumor defenses to guide CAR T cells’ attacks.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Epithelial cells and fungal spores are marked with fluorescent dyes. Cells have an irregular shape and are shown in green and blue colors. Spores are spherical in shape and are labeled green if they are surrounded by p11 protein. A protein in mature phagosomes is labeled violet.
Fungal Spores Hijack a Host Protein to Escape Death
Mariella Bodemeier Loayza Careaga, PhD | Jun 20, 2023 | 3 min read
Uncovering the components used by Aspergillus fumigatus to avoid intracellular destruction broadens our understanding of the mold’s pathogenesis. 
Illustration of newly discovered mechanism allowing kinesin to “walk” down a microtubule. A green kinesin molecule with an attached yellow fluorophore is shown passing through a blue laser as it rotates step by step along a red and purple microtubule, fueled by blue ATP molecules that are hydrolyzed into orange ADP and phosphate groups.
High-Resolution Microscope Watches Proteins Strut Their Stuff
Holly Barker, PhD | Mar 31, 2023 | 3 min read
Modification on a high-resolution fluorescent microscopy technique allow researchers to track the precise movements of motor proteins. 
Artist’s rendition of red SARS-CoV-2 coronaviruses floating near blue strands of DNA.
COVID-19 Infections May Reshape Genetic Landscape
Holly Barker, PhD | Mar 30, 2023 | 3 min read
SARS-CoV-2 infection triggers structural changes in the host cell’s DNA, which provide a molecular explanation for long COVID, a new study suggests. 
Microbiology
The Scientist Staff | May 12, 1991 | 1 min read
J.B. Stock, A.J. Ninfa, A.M. Stock, "Protein phosphorylation and regulation of adaptive responses in bacteria," Microbiological Reviews, 53:450-90, 1989. Jeff Stock (Princeton University, Princeton, N.J.): "Although research on signal transduction has traditionally focused on eukaryotic cells, prokaryotes also respond to environmental signals. Recent studies, reviewed in this article, show that a single bacterial cell such as Escherichia coli may have as many as 50 different receptor kinases a
Illustration of a red bacteriophage infecting a blue bacterium, with other bacteria in the background.
Prokaryotes Are Capable of Learning to Recognize Phages
Patience Asanga | Aug 17, 2022 | 3 min read
Immune defense genes in bacteria and archaea can identify viral proteins, a study finds, revealing similarities between the immune systems of prokaryotic and eukaryotic organisms.

Run a Search

ADVERTISEMENT