ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag amyloid plaques microbiology cell molecular biology

Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Attacking b-Amyloid at its Source
Brendan Maher | Jan 20, 2002 | 5 min read
The all-out assault to impede production of b-amyloid (Ab), the plaque-forming peptide believed by many to cause neurodegenerative Alzheimer's disease (AD), entails a war on two fronts. For those aiming to prevent plaques at their cellular source, the two clear targets are b-secretase and g-secretase, which sequentially cleave amyloid precursor protein (APP) to generate Ab. Some victories are emerging: Small molecules designed to inhibit g-secretase activity are being clinically tested, and the
Do Microbes Trigger Alzheimer’s Disease?
Jill U. Adams | Sep 1, 2017 | 10 min read
The once fringe idea is gaining traction among the scientific community.
Fluorescence microscopy image of cells expressing fluorescent biosensors. Green and magenta fluorescence is observed outside of the cell nuclei.
Choosing Fluorescent Reagents for Every Live Cell Application
The Scientist and MilliporeSigma | Nov 30, 2022 | 4 min read
Scientists gain unique insights into active biological processes with specific fluorescent probes, dyes, and biosensors.
Artist’s rendition of a neuron silhouetted against a glowing red background.
SNO-y Protein Levels Help Explain Why More Women Develop Alzheimer’s
Dan Robitzski | Jan 6, 2023 | 4 min read
Female postmortem brains contain more S-nitrosylated C3 proteins, likely linked to menopause, which instruct immune cells to kill neuronal synapses.
Epithelial cells and fungal spores are marked with fluorescent dyes. Cells have an irregular shape and are shown in green and blue colors. Spores are spherical in shape and are labeled green if they are surrounded by p11 protein. A protein in mature phagosomes is labeled violet.
Fungal Spores Hijack a Host Protein to Escape Death
Mariella Bodemeier Loayza Careaga, PhD | Jun 20, 2023 | 3 min read
Uncovering the components used by Aspergillus fumigatus to avoid intracellular destruction broadens our understanding of the mold’s pathogenesis. 
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Amending the Amyloid Hypothesis
Maria Anderson | Oct 24, 2004 | 6 min read
Aggregates of misfolded proteins are implicated in various neurodegenerative diseases.

Run a Search

ADVERTISEMENT