ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag transcriptional regulation cell molecular biology immunology neuroscience

A person moving the hands of a vintage clock backwards.
Synthetic Circuits Reveal the Key to Rewinding the Cellular Clock
Charlene Lancaster, PhD | Mar 12, 2024 | 4 min read
Using a circuit-based system, scientists determined the ideal transcription factor levels to promote the successful reprogramming of fibroblasts into induced pluripotent stem cells.
Molecular Biology
The Scientist Staff | Sep 1, 1991 | 1 min read
S. Ghosh, D. Baltimore, "Activation in vitro of NF-kB by phosphorylation of its inhibitor IkB," Nature, 344:678-82, 1990. Sankar Ghosh (Whitehead Institute for Biomedical Research, Cambridge, Mass.): "This paper brings together two areas of rapidly moving research: the role of protein phosphorylation and control of transcriptional regulation. The inhibitor IkB not only keeps the transcription factor NF-kB in the cytoplasm--away from DNA--but also directly prevents it from binding to DNA. By sh
Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
Researchers CHOOSE Organoids to Investigate Neurodevelopment
Deanna MacNeil, PhD | Jan 29, 2024 | 4 min read
A 3D variation of pooled CRISPR screens could connect the dots between autism spectrum disorder genetics and cell fate pathways in the developing brain.
Novelty Activates a Long Noncoding RNA for Spatial Learning in Mice
Shelby Bradford, PhD | Feb 6, 2024 | 4 min read
Genes activated in new environments include those used during development.
Conceptual image showing molecules making up a brain shape
The Noncoding Regulators of the Brain
Christie Wilcox, PhD | Sep 12, 2022 | 10+ min read
Noncoding RNAs are proving to be critical players in the evolution of brain anatomy and cognitive complexity.
A rendering of a human brain in blue on a dark background with blue and white lines surrounding the brain to represent the construction of new connections in the brain.
Defying Dogma: Decentralized Translation in Neurons
Danielle Gerhard, PhD | Sep 8, 2023 | 10+ min read
To understand how memories are formed and maintained, neuroscientists travel far beyond the cell body in search of answers.
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
On the left is a normally developing mouse embryo, on the right is a slightly larger mouse embryo that also contains horse cells that glow green.
Chimera research opens new doors to understanding and treating disease
Hannah Thomasy, PhD, Drug Discovery News | Aug 9, 2023 | 10 min read
Animals with human cells could provide donor organs or help us understand neuropsychiatric disorders.
Immunology
The Scientist Staff | Feb 3, 1991 | 1 min read
J.J. Siekierka, S.H.Y. Hung, M. Poe, C.S. Lin, N.H. Sigal, "A cytosolic binding protein for the immunosuppressant FK-506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin," Nature, 341, 755-7, 26 October 1989. John J. Siekierka (Merck Sharp & Dohme Research Laboratories, Rahway, N.J.): "Two clinically important immunosuppressant drugs, cyclosporin A (CsA) and FK-506, are valuable probes for studying the molecular mechanisms of T cell activation. Although chemically uniqu

Run a Search

ADVERTISEMENT