ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag frog cell molecular biology

DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Microscopic image of a live amoeba.
Illuminating Specimens Through Live Cell Imaging
Charlene Lancaster, PhD | Mar 14, 2024 | 8 min read
Live cell imaging is a powerful microscopy technique employed by scientists to monitor molecular processes and cellular behavior in real time.
Green and red fluorescent proteins in a zebrafish outline the animal’s vasculature in red and lymphatic system in green in a fluorescent image. Where the two overlap along the bottom of the animal is yellow.
Serendipity, Happenstance, and Luck: The Making of a Molecular Tool
Shelby Bradford, PhD | Dec 4, 2023 | 10+ min read
The common fluorescent marker GFP traveled a long road to take its popular place in molecular biology today.
A close up of several modular puzzle pieces.
Making Connections: Click Chemistry and Bioorthogonal Chemistry
Deanna MacNeil, PhD | Feb 13, 2024 | 5 min read
Simple, quick, and modular reactions allow researchers to create useful molecular structures from a wide range of substrates.
Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
Molecular Biology
The Scientist Staff | Oct 25, 1992 | 2 min read
A. Simeone, D. Acampora, V. Nigro, A. Faiella, M. D'Esposito, A. Stornainolo, et al., "Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells," Mechanisms of Development, 33:215-228, 1991. Edoardo Bonicelli (H. S. Raffaele, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy): "This paper put some order into the zoo of vertebrate homeobox genes controlling positional information necessary for the appropriate body s
MOLECULAR BIOLOGY
Paris | Jul 19, 1992 | 1 min read
Michel Philippe (Universite de Rennes, Rennes Cédex, France): "In yeast, two critical points of the cell cycle (Start and G1/S) are regulated by the same protein. This protein, called p34cdc2, is coded by the genes cdc2 in Schizzosaccharomyces pombe and CDC28 in Saccharomyces cerevisiae. By complementation of yeast mutants, proteins from higher eucaryotes homologous to cdc2 have been cloned. Moreover, p34cdc2 has been shown to be one of the main components of the well-known M-phase promotin
A person moving the hands of a vintage clock backwards.
Synthetic Circuits Reveal the Key to Rewinding the Cellular Clock
Charlene Lancaster, PhD | Mar 12, 2024 | 4 min read
Using a circuit-based system, scientists determined the ideal transcription factor levels to promote the successful reprogramming of fibroblasts into induced pluripotent stem cells.
Of Frogs and Embryos
Karen Hopkin | Sep 1, 2012 | 1 min read
Associate Professor in Molecular Cell & Developmental Biology at the University of Texas at Austin, John Wallingford, makes his living using cutting-edge microscopic techniques to watch developmental events unfold in real time.

Run a Search

ADVERTISEMENT