ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag biomedical research immunology disease medicine cell molecular biology

DNA molecule.
Finding DNA Tags in AAV Stacks
Mariella Bodemeier Loayza Careaga, PhD | Mar 7, 2024 | 8 min read
Ten years ago, scientists put DNA barcodes in AAV vectors, creating an approach that simplified, expedited, and streamlined AAV screening. 
3D illustration of damaged myelin sheath seen in demyelinating diseases such as multiple sclerosis.
Tracking Down Innate Immune Cells in Multiple Sclerosis
Mariella Bodemeier Loayza Careaga, PhD | Dec 4, 2023 | 5 min read
A novel PET tracer targeting a receptor in myeloid cells can help monitor disease progression in a mouse model of multiple sclerosis.
A bat flying in a dark cave
Turning on the Bat Signal
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Scientists around the world investigate how bat immune systems cope with viral attacks and how this information could be used to keep humans safe.
A close up of several modular puzzle pieces.
Making Connections: Click Chemistry and Bioorthogonal Chemistry
Deanna MacNeil, PhD | Feb 13, 2024 | 5 min read
Simple, quick, and modular reactions allow researchers to create useful molecular structures from a wide range of substrates.
Molecular Biology
The Scientist Staff | Sep 1, 1991 | 1 min read
S. Ghosh, D. Baltimore, "Activation in vitro of NF-kB by phosphorylation of its inhibitor IkB," Nature, 344:678-82, 1990. Sankar Ghosh (Whitehead Institute for Biomedical Research, Cambridge, Mass.): "This paper brings together two areas of rapidly moving research: the role of protein phosphorylation and control of transcriptional regulation. The inhibitor IkB not only keeps the transcription factor NF-kB in the cytoplasm--away from DNA--but also directly prevents it from binding to DNA. By sh
Macrophages on the Fast Track to Tumor Defense
Laura Tran, PhD | Feb 22, 2024 | 3 min read
In a race to the tumor, a macrophage’s phenotype can give it a leg up on the competition.
On the left is a normally developing mouse embryo, on the right is a slightly larger mouse embryo that also contains horse cells that glow green.
Chimera research opens new doors to understanding and treating disease
Hannah Thomasy, PhD, Drug Discovery News | Aug 9, 2023 | 10 min read
Animals with human cells could provide donor organs or help us understand neuropsychiatric disorders.
Artist&rsquo;s rendition of multiple <em>Neisseria gonorrhoeae</em>, the bacteria that causes gonorrhea, depicted as two spheres stuck together, each covered in tendrils.
Gonorrhea-Blocking Mutation Also Protects Against Alzheimer’s: Study
Holly Barker, PhD | Aug 5, 2022 | 4 min read
Research traces the evolution of a gene variant that reduces the risk of Alzheimer’s disease, finding that it originally evolved in response to infectious bacteria.
Advancing Drug Discovery by Employing Synthetic Biology Tools
Advancing Drug Discovery by Employing Synthetic Biology Tools
The Scientist | Oct 18, 2023 | 1 min read
In this webinar, learn about the origins of artificial gene circuits and how researchers currently use synthetic biology strategies to uncover new drugs. 
Leveraging Stem Cells to Create Better Disease Models
Leveraging Stem Cells to Create Better Disease Models
The Scientist | May 29, 2023 | 2 min read
Clive Svendsen, Meritxell Huch, Ameen Salahudeen, and Maksim Plikus will discuss the latest advances in using patient-derived stem cells to create more accurate disease models.

Run a Search

ADVERTISEMENT