ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag quantitative pcr developmental biology immunology evolution

PCR tubes placed into the 96-well loading chamber of a PCR thermocycler instrument.
Directing Superior Reagents for Better PCR Results
The Scientist and MilliporeSigma | Oct 2, 2023 | 3 min read
Directed evolution approaches are creating new reagents to help a tried-and-true technique reach new heights.
In Evolution's Garden
Megan Scudellari | Jun 1, 2013 | 9 min read
Raising one evolutionary question after another, Brandon Gaut has harvested a crop of novel findings about how plant genomes evolve.
Layered visual representation of multiomics
Integrate and Innovate with NGS and Multiomics
The Scientist and Illumina | May 4, 2023 | 6 min read
Researchers across disciplines combine layers of discovery obtained with accessible NGS-based multiomics approaches.
dual expresser t cell immunology type 1 diabetes
The Science News that Shaped 2019
Kerry Grens | Dec 20, 2019 | 6 min read
A T cell discovery, “hachimoji” DNA, a new species of human, and mounting fears of espionage rounded off the list this year.
Creative Emulsification
Sabrina Richards | Nov 1, 2012 | 8 min read
Enhancing data collection from emulsion PCR reactions: three case studies
Top 10 Innovations 2013
The Scientist | Dec 1, 2013 | 10+ min read
The Scientist’s annual competition uncovered a bonanza of interesting technologies that made their way onto the market and into labs this year.
Going Their Separate Ways: A Profile of Products for Cell Separation
Michelle Vettese-dadey | Sep 12, 1999 | 10+ min read
Date: September 13, 1999Cell Separation Products Magnetic Cell Separation Technologies that isolate rare cell types to high purity are essential to the cell biology researcher. Understanding cell developmental pathways becomes increasingly significant as diagnosis and treatment of disease turns more to the molecular level.1 This diagnosis of cell-related diseases requires methods for detection, isolation, and analysis of individual cells regardless of their frequency.2 The hematopoietic system
2018 Top 10 Innovations
The Scientist | Dec 1, 2018 | 10+ min read
Biology happens on many levels, from ecosystems to electron transport chains. These tools may help spur discoveries at all of life's scales.
Top 10 Innovations 2021
2021 Top 10 Innovations
The Scientist | Dec 1, 2021 | 10+ min read
The COVID-19 pandemic is still with us. Biomedical innovation has rallied to address that pressing concern while continuing to tackle broader research challenges.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo

Run a Search

ADVERTISEMENT