ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag automation ecology cell molecular biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
A close up of a tick held in a pair of forceps, with Kevin Esvelt’s face out of focus in the background.
CRISPR Gene Drives and the Future of Evolution
Hannah Thomasy, PhD | Mar 15, 2024 | 10+ min read
Genetic engineering pioneer Kevin Esvelt’s work highlights biotechnology’s immense potential for good—but also for catastrophe.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Weathering Hantavirus: Ecological Monitoring Provides Predictive Model
Steve Bunk | Jul 4, 1999 | 7 min read
Photo: Steve Bunk Dave Tinnin, field research associate in the University of New Mexico's biology department, takes blood samples and measurements of rodents caught on the research station grounds. At the end of a freeway exit near Soccoro, N.M., the hairpin turn onto a gravel road is marked by a sign that warns, "Wrong Way." But it isn't the wrong way if you want to reach the University of New Mexico's (UNM) long-term ecological research (LTER) station. The sign's subterfuge is the first indi
2022 Top 10 Innovations&nbsp;
2022 Top 10 Innovations
The Scientist | Dec 12, 2022 | 10+ min read
This year’s crop of winning products features many with a clinical focus and others that represent significant advances in sequencing, single-cell analysis, and more.
Automation Advances in Proteomics
Aileen Constans | Aug 24, 2003 | 10 min read
Courtesy of the Institute for Systems Biology  MOVING FORWARD: The LCQ Deca XP, an electrospray ionization/ion trap mass spectrometer from Thermo Finnigan The sheer number of new protein-focused mass spectrometry (MS) instruments introduced last year is a testament to the growing importance of the technique in proteomics research. Coupled to this trend is a growing need for automation of upfront sample preparation to feed these analytical machines. From the specialized academic lab to hi
Automated Colony Pickers Evolve
Helen Dell(hdell@the-scientist.com) | Jul 3, 2005 | 6 min read
Everyone knows that the first genome sequencing projects took years of work and represent the combined product of tens of thousands of individual fragments.
Scratching the Cell Surface
Aileen Constans | Nov 21, 2004 | 10 min read
Most biological microscopes delve deep into the cell, imaging optical slices that can be put together into a three-dimensional rendering of what lies beneath the cell membrane.
Building Nanoscale Structures with DNA
Arun Richard Chandrasekaran | Jul 16, 2017 | 10+ min read
The versatility of geometric shapes made from the nucleic acid are proving useful in a wide variety of fields from molecular computation to biology to medicine.

Run a Search

ADVERTISEMENT