ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag chromosome folding domains developmental biology ecology

One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
Microscopy image of the cnidarian <em>Hydractinia symbiolongicarpus&nbsp;</em>with cell nuclei stained blue and oocytes stained yellow
Ancient Immunoglobulin Genes Help Cnidarians Decide to Fight or Fuse
Sophie Fessl, PhD | Oct 11, 2022 | 4 min read
Immunoglobulin genes might have evolved much earlier than previously expected, perhaps even in the common ancestor of Cnidarians and Bilateria, a study suggests.
Archaea Family Tree Blossoms, Thanks to Genomics
Amber Dance | Jun 1, 2018 | 10+ min read
Identification of new archaea species elucidates the domain’s unique  biology and sheds light on its relationship to eukaryotes.
A microscope image of a dinoflagellate.
Dinoflagellate Genome Structure Unlike Any Other Known
Amanda Heidt | May 10, 2021 | 5 min read
The transcription of DNA drives the remarkably tidy organization of chromosomes in the dinoflagellate Symbiodinium microadriaticum.
Luminescence Developments Help Scientists See The Light
James Kling | May 11, 1997 | 9 min read
Biologists are constantly seeking more sensitive assays to detect the presence of organisms or telltale DNA, RNA, and proteins. Although radioactive tags incorporated into the target itself (or into a complementary strand)-and later detected by Geiger counters or film exposures-have traditionally given good sensitivity, the problems of waste disposal and laboratory monitoring have driven a search for alternative tags that have radioactivity's sensitivity but avoid its hazards. Fluorescent tags-
Building Nanoscale Structures with DNA
Arun Richard Chandrasekaran | Jul 16, 2017 | 10+ min read
The versatility of geometric shapes made from the nucleic acid are proving useful in a wide variety of fields from molecular computation to biology to medicine.
Surpassing the Law of Averages
Jeffrey M. Perkel | Sep 1, 2009 | 7 min read
By Jeffrey M. Perkel Surpassing the Law of Averages How to expose the behaviors of genes, RNA, proteins, and metabolites in single cells. By necessity or convenience, almost everything we know about biochemistry and molecular biology derives from bulk behavior: From gene regulation to Michaelis-Menten kinetics, we understand biology in terms of what the “average” cell in a population does. But, as Jonathan Weissman of the University of Califo
Freeze Frame
Jeffrey M. Perkel | Feb 1, 2009 | 10 min read
How to troubleshoot sample preparation for cryo-electron microscopy, an up-and-coming structural biology technique.
New Technologies Shed Light on Caveolae
Ben Nichols | Jun 1, 2018 | 10+ min read
The functions of the cellular invaginations identified more than half a century ago are now beginning to be understood in detail.
The Shape of Heredity
Susan M. Gasser | Jul 1, 2009 | 10+ min read
By Susan M. Gasser The Shape of Heredity Tracking the dance of DNA and structural proteins within the nucleus shows that placement makes the difference between gene activity and silence. What's true of the best architecture is also true of cellular structures: form follows function. We biologists often take this mantra to an extreme, searching for the function of a molecule or gene without much consideration of its structure, its phys

Run a Search

ADVERTISEMENT