ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag protein protein interactions neuroscience developmental biology

Developmental Biology
The Scientist Staff | Jan 3, 1999 | 3 min read
L.B. Zimmerman, J.M. De Jesús-Escobar, R.M. Harland, "The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4," Cell, 86:599-606, 1996. (Cited in more than 180 papers since publication) Comments by Richard M. Harland, Choh Hao Li professor of biochemistry and molecular biology, University of California, Berkeley Richard M. Harland Researchers had long suspected that the protein noggin's interaction with bone morphogenetic proteins (BMPs) dictated devel
One Protein to Rule Them All
Shelby Bradford, PhD | Feb 28, 2024 | 10+ min read
p53 is possibly the most important protein for maintaining cellular function. Losing it is synonymous with cancer.
Unraveling Protein-Protein Interactions
Leslie Pray | Jan 26, 2003 | 8 min read
Courtesy of Adrian Arakaki THERE'S GOLD IN THEM THERE COMPLEXES: Digging up protein-protein interactions with MULTIPROSPECTOR. Using a computer instead of a pipette, Jeffrey Skolnick contemplates the subtle forces that bring proteins together. His first computational forays helped decipher the quaternary structure of proteins--the interactions between subunits in molecules such as tropomyosin. Now Skolnick, executive director of the Buffalo Center of Excellence in Bioinformatics, Buffalo
Probing Protein Interactions
Laura Defrancesco | Apr 14, 2002 | 8 min read
The challenge of proteomics is personified in the Greek god, Proteus. The keeper of all knowledge, past, present and future, Proteus would not give up any information easily; even while held down, he would struggle and assume different forms before giving anything up. Remarkably, proteomics, and proteins for that matter, were not named after Proteus, but the imagery could not be more fitting. It's still anyone's guess what the final gene count will be in the human genome, let alone the total nu
Protein Purification II: Affinity Tags
Aileen Constans | Feb 17, 2002 | 9 min read
Scientists working with recombinant proteins expressed in Escherichia coli probably use at least one liquid chromatography technique to purify their protein of interest. But liquid chromatography frequently requires a considerable amount of optimization, and usually involves several different chromatographic steps to rid the sample of contaminants.1 The ideal solution would be to create a resin that is completely specific to the target protein, enabling one-step purification. Affinity chromatogr
Abstract graphene structures
Synthetic Organelles Let Researchers Control Cell Behavior
Catherine Offord | Nov 1, 2021 | 3 min read
A technique that reversibly bundles tagged cargo into artificial membraneless compartments gives scientists the ability to switch cell processes on and off.
Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
Developmental Biology
The Scientist Staff | Jan 3, 1999 | 3 min read
S. Piccolo, Y. Sasai, B. Lu, E.M. De Robertis, "Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4," Cell, 86:589-98, 1996. (Cited in more than 170 papers since publication) Comments by Eddy M. De Robertis, Investigator, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles Eddy M. De Robertis In 1924, two scientists identified a small group of embryonic cells that tell their neighbor
Amyloid plaques on axons of neurons
The Misunderstood Proteins of Neurodegeneration
Catherine Offord | Aug 1, 2022 | 10+ min read
The normal functions of peptides that aggregate in Alzheimer’s, Parkinson’s, and Huntington’s have been largely overlooked by scientists, but some argue that they are critical for understanding the development of disease.

Run a Search

ADVERTISEMENT