ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag tumor necrosis factor genetics genomics

bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Bugs as Drugs to Boost Cancer Therapy
Danielle Gerhard, PhD | Jan 18, 2024 | 7 min read
Bioengineered bacteria sneak past solid tumor defenses to guide CAR T cells’ attacks.
Advances in the functional characterization of newly discovered microproteins hint at their diverse roles  in health and disease
The Dark Matter of the Human Proteome
Annie Rathore | Apr 1, 2019 | 10 min read
Advances in the functional characterization of newly discovered microproteins hint at diverse roles in health and disease.
Tagged for Cleansing
Michele Pagano | Jun 1, 2009 | 10+ min read
Tagged for Cleansing Not just the cell's trash and recycling center, the ubiquitin system controls complex cellular pathways with elegant simplicity and precision. By Michele Pagano have always gravitated toward order. I may even take it a bit too far according to friends who liken my office to a museum. However, I like to think it not a compulsion, but a Feng Shui approach to life. With this need for order, I may have been better suited to
The Human Genome
Arielle Emmett | Jul 23, 2000 | 10+ min read
Life sciences took center stage virtually around the world June 26. President Bill Clinton, flanked on the left by Celera Genomics Group president J. Craig Venter and on the right by National Human Genome Research Institute director Francis S. Collins, announced the completion of "the first survey of the entire human genome."
Genome patents need purpose
Andrea Gawrylewski | Aug 4, 2008 | 2 min read
The British High Court's rejection linkurl:last week;http://www.the-scientist.com/blog/display/54909/ of a biotech company's patent on the genetic sequence coding for a therapeutically important protein may be a warning for other biotechs who hold patents on portions of the human genome. The court ruled last week that a patent held by Human Genome Sciences since the mid 1990s was invalid because at the time the company applied for the patent they hadn't demonstrated a practical use. The patent
Antibody Drug Development: On Target
Deborah Fitzgerald | Nov 16, 2003 | 9 min read
Courtesy of Abbott Laboratories  BETTER LIVING THROUGH IMMUNOLOGY: Though the exact cause of rheumatoid arthritis (RA) is unknown, people suffering from the disease have an excess of tumor necrosis factor alpha (TNF-a) that accumulates in their joints. Abbott Laboratories' Humira, a humanized monoclonal antibody that targets TNF-a, helps prevent the inflammation characteristic of RA and inhibits the progression of structural joint damage. As soon as Köhler and Milstein described hyb
Genome Economy
Ricki Lewis | Jun 10, 2001 | 10 min read
The Human Genome Project's discovery1 that the human body runs on an instruction manual of a mere 35,000 or so genes--compared to the worm's 19,000, the fruit fly's 13,000, and the tiny mustard relative Arabidopsis thaliana's 25,000--placed humanity on an even playing field with these other, supposedly simpler, organisms. It was a humbling experience, but humility quickly gave way to awe with the realization that the human genome might encode 100,000 to 200,000 proteins. Scientists base this num
Diagnosing Cancer: A Genomics and Proteomics Approach
Tom Hollon | Sep 21, 2003 | 7 min read
In 1996, Jeff Trent and colleagues published the first paper describing DNA microarrays as tools for pinpointing gene variants underlying various tumor properties.1 Now, as president and scientific director of Translational Genomics Research Institute (TGEN), in Phoenix, Trent is using microarrays to look for gene expression patterns that can be applied to developing diagnostics. The role of microarrays, Trent says, "will be on the discovery side. Testing all 30,000 genes against a diagnosti
Epigenetics: Genome, Meet Your Environment
Leslie Pray | Jul 4, 2004 | 10+ min read
©Mehau Kulyk/Photo Researchers, IncToward the end of World War II, a German-imposed food embargo in western Holland – a densely populated area already suffering from scarce food supplies, ruined agricultural lands, and the onset of an unusually harsh winter – led to the death by starvation of some 30,000 people. Detailed birth records collected during that so-called Dutch Hunger Winter have provided scientists with useful data for analyzing the long-term health effects of prenat

Run a Search

ADVERTISEMENT