ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag organs microbiology developmental biology

Microfluidics: Biology’s Liquid Revolution
Laura Tran, PhD | Feb 26, 2024 | 8 min read
Microfluidic systems redefined biology by providing platforms that handle small fluid volumes, catalyzing advancements in cellular and molecular studies.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Bugs as Drugs to Boost Cancer Therapy
Danielle Gerhard, PhD | Jan 18, 2024 | 7 min read
Bioengineered bacteria sneak past solid tumor defenses to guide CAR T cells’ attacks.
The figure shows two waves made of DNA double helixes representing gene expression changes in the malaria parasite and its human host. These changes reveal a synchronization between parasite and host.
Malaria Parasites Sync with Hosts’ Molecular Rhythms
Mariella Bodemeier Loayza Careaga, PhD | Sep 1, 2023 | 2 min read
Evidence of malaria parasites aligning with their human hosts may pave the way for new antimalarial agents.
Collage of images including sperm, bacteria, coral, and an illustration of a researcher
Our Favorite Cell and Molecular Biology Stories of 2021
Jef Akst | Dec 2, 2021 | 3 min read
Beyond The Scientist’s coverage of COVID-19’s molecular underpinnings were many other stories highlighting the advances made in scientists’ understanding of the biology of cells.
Microbiology
The Scientist Staff | May 12, 1991 | 1 min read
J.B. Stock, A.J. Ninfa, A.M. Stock, "Protein phosphorylation and regulation of adaptive responses in bacteria," Microbiological Reviews, 53:450-90, 1989. Jeff Stock (Princeton University, Princeton, N.J.): "Although research on signal transduction has traditionally focused on eukaryotic cells, prokaryotes also respond to environmental signals. Recent studies, reviewed in this article, show that a single bacterial cell such as Escherichia coli may have as many as 50 different receptor kinases a
bacteria inside a biofilm
How Bacterial Communities Divvy up Duties
Holly Barker, PhD | Jun 1, 2023 | 10+ min read
Biofilms are home to millions of microbes, but disrupting their interactions could produce more effective antibiotics.
Illustration showing the upper part of a human body connected to a DNA helix
Unraveling the Mystery of Zombie Genes
Iris Kulbatski, PhD | Oct 31, 2023 | 6 min read
Digging into how and why some genes are resurrected after death sounds morbid, but it has practical applications. 
Illustration of newly discovered mechanism allowing kinesin to “walk” down a microtubule. A green kinesin molecule with an attached yellow fluorophore is shown passing through a blue laser as it rotates step by step along a red and purple microtubule, fueled by blue ATP molecules that are hydrolyzed into orange ADP and phosphate groups.
High-Resolution Microscope Watches Proteins Strut Their Stuff
Holly Barker, PhD | Mar 31, 2023 | 3 min read
Modification on a high-resolution fluorescent microscopy technique allow researchers to track the precise movements of motor proteins. 
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.

Run a Search

ADVERTISEMENT