ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag protein engineering neuroscience

Different colored cartoon viruses entering holes in a cartoon of a human brain.
A Journey Into the Brain
Danielle Gerhard, PhD | Mar 22, 2024 | 10+ min read
With the help of directed evolution, scientists inch closer to developing viral vectors that can cross the human blood-brain barrier to deliver gene therapy.
Microscopy image of a fluorescent green oligodendrocyte surrounded by astrocytes stained red with blue nuclei.
Searching for a Direct Route to Multiple Sclerosis Treatment
Deanna MacNeil, PhD | Jul 17, 2023 | 3 min read
Researchers created a new high-throughput tool to hunt for therapies that remyelinate the nervous system.
Researchers in George Church&rsquo;s lab modified wild type ADK proteins (left) in <em >E.coli</em>, furnishing them with an nonstandard amino acid (nsAA) meant to biocontain the resulting bacterial strain.
A Pioneer of The Multiplex Frontier
Rashmi Shivni, Drug Discovery News | May 20, 2023 | 10 min read
George Church is at it again, this time using multiplex gene editing to create virus-proof cells, improve organ transplant success, and protect elephants.
Nerve cell labelled with different colours
Psychedelics Slip Past Cell Membranes When Treating Depression
Alejandra Manjarrez, PhD | Feb 24, 2023 | 4 min read
The antidepressant properties of hallucinogenic drugs may stem from their ability to bind to intracellular serotonin receptors, a study suggests.
Arsenic and Old Protein Labels
Brendan Maher | May 26, 2002 | 2 min read
For a team at the University of California, San Diego, nine years of tinkering with arsenic paid off in the development of a new technique that can tag proteins with different colors over time and even zero in to electron microscopic resolution. Roger Tsien, Howard Hughes Medical Institute investigator and professor of pharmacology, chemistry, and biochemistry at UCSD, says the project started with the suggestion from a colleague that one can tag a two-cysteine sequence in a protein with a singl
Photo of Ankara Jain in his lab
Ankur Jain Explores RNA Aggregations in Neurodegenerative Disease
Hannah Thomasy, PhD | Oct 3, 2022 | 3 min read
The MIT biologist studies how RNA molecules self-assemble and the role these accumulations may play in diseases such as ALS and Huntington’s.
Microscopy image showing patches of magenta and green
Three Autism-Linked Genes Converge on Tweaks to Cells’ Timing
Angie Voyles Askham, Spectrum | Feb 3, 2022 | 3 min read
The genes are involved in pacing the development of inhibitory and excitatory neurons. An imbalance in these two types of signaling is thought to play a role in autism.
Scanning electron micrograph (SEM) of the unicellular yeast Saccharomyces cerevisiae, known as Baker's or Brewer's yeast.
Yeast Models Provide New Insights into Neurodegenerative Diseases
Mahlon Collins | Oct 1, 2021 | 10+ min read
The single-celled fungus allows researchers to study Alzheimer’s, Parkinson’s, ALS and other brain diseases with unparalleled speed and scale.
SYNGAP1 helps neurons eliminate old synapses and form new ones after a novel experience (left and center left)—a process weakened in mice missing a copy of the gene (center right and right).
Autism-Linked Gene SYNGAP1 Molds Synaptic Plasticity, Learning
Angie Voyles Askham, Spectrum | Oct 26, 2021 | 4 min read
The finding may help to explain why people with SYNGAP1 mutations tend to have learning difficulties and a high tolerance for pain.

Run a Search

ADVERTISEMENT