ADVERTISEMENT

404

Not Found

Is this what you were looking for?

tag eukaryote culture

Yeast Made to Harvest Light Hint at Evolution’s Past
Kamal Nahas, PhD | Feb 21, 2024 | 6 min read
Scientists transferred light-harvesting proteins into yeast for the first time, shining a light on the past lives of eukaryotic cells.
bacteria and DNA molecules on a purple background.
Engineering the Microbiome: CRISPR Leads the Way
Mariella Bodemeier Loayza Careaga, PhD | Mar 15, 2024 | 10+ min read
Scientists have genetically modified isolated microbes for decades. Now, using CRISPR, they intend to target entire microbiomes.
Cookbook For Eukaryotic Protein Expression: Yeast, Insect, and Plant Expression Systems
Christopher Smith | Nov 8, 1998 | 10+ min read
Date: November 9, 1998Baculovirus Expression Vectors In the recent past, efforts to elucidate the relationship between protein structure and biological function have intensified. Of particular interest is an understanding of the elements of sequence and structure that mediate specific functions. Often the protein of interest is in low abundance in its natural source and can be difficult to purify and/or unstable--subject to proteolytic cleavage or unfolding/non specific refolding during exhaust
Keeping Tabs on Cultured Cells
Lissa Harris(lharris@the-scientist.com) | Mar 13, 2005 | 6 min read
THE CULTURE WITHIN:Photo courtesy of Drs. C.C. Uphoff and H.G. Drexler, DSMZ-German Collection of Microorganism and Cell Cultures, Braunschweig, GermanyHeLa cell line infected with Mycoplasma hyorhinis. Scanning electron micrograph of critical point-dried cell culture grown on cover slips. Note the loop- and rod-like mycoplasmas attached to the host cell membrane. Smaller web-like structures on the cell surface represent microvilli of the cell. Original magnification 3,000×.Mycoplasmas have
Unraveling Cellular Biochemistry, One Cell at a Time
Bennett Daviss(bdaviss@the-scientist.com) | Feb 27, 2005 | 8 min read
For decades biochemists have been teasing apart the metabolic circuits that power eukaryotic cells.
Out, Damned Mycoplasma!
Kelly Rae Chi | Dec 1, 2013 | 8 min read
Pointers for keeping your cell cultures free of mycoplasma contamination
Making Things Grow: Insect Cells, Stem Cells, and Primary Cell Lines All Pose Challenges for Cell Culturists
Laura Defrancesco | Jun 21, 1998 | 5 min read
Date: June 22, 1998 Insect Cell Culture Media, Suppliers of Primary Cell Culture Media Advantages for Protein Expression Studies Since the mid-1950s cultures of insects--cockroaches, fruit flies, and leafhoppers, to name a few--have been the object of quiet study by physiologists and cell biologists. But along came genetic engineering and suddenly insect cultures have been put in the spotlight since they provide advantages over both bacterial and mammalian systems for recombinant protein prod
A Test Bed for Budding Technologies
Aileen Constans | Jul 4, 2004 | 6 min read
DELETION BY DESIGN:Courtesy of Guci GiaeverThe deletion cassette module used to delete each yeast gene contains two 74-basepair tags upstream and downstream (UPTAG and DNTAG) of the KanMX gene, which confers resistance to the drug geneticin. UPTAG and DNTAG contain 18 basepairs of genomic sequence to flank the yeast's open reading frame, and U1 and U2, or D1 and D2 PCR primers for amplifying a unique 20-basepair TAG region-the so-called molecular barcode. A second round of PCR adds 45 base-pairs
Yeast: An Attractive, Yet Simple Model
Gregory Smutzer | Sep 16, 2001 | 9 min read
Yeast possesses many characteristics that make it especially useful as a model system in the laboratory, including an entirely sequenced genome. Recently, a number of researchers published studies detailing the transition from genome sequencing to functional genomics. Notably, these scientists have developed new high-throughput approaches to the characterization of large numbers of yeast genes. In aggregate, these studies make yeast one of the most well-characterized eukaryotic organisms known.
Researchers Engineer Epigenome Editors to Study How Gene Expression Affects Disease
Ashley Yeager | Jan 1, 2019 | 7 min read
Using CRISPR and other tools, scientists are modifying DNA methylation, histone marks, and other modifiers of gene expression to understand how they affect health and disease.

Run a Search

ADVERTISEMENT