Gene, regulate thyself

The stochastic nature of every chemical event in the cell generates noise that can lead to large fluctuations in protein and mRNA levels. Autoregulatory negative feedback loops in gene circuits have been proposed, but never shown, to be one way of limiting this variation. With a simple experiment, in the 1 June Nature Becskei and Serrano demonstrate that negative feedback can decrease the inherent variability of gene expression more than threefold. They direct expression of a hybrid protein (gre

By | June 7, 2000

The stochastic nature of every chemical event in the cell generates noise that can lead to large fluctuations in protein and mRNA levels. Autoregulatory negative feedback loops in gene circuits have been proposed, but never shown, to be one way of limiting this variation. With a simple experiment, in the 1 June Nature Becskei and Serrano demonstrate that negative feedback can decrease the inherent variability of gene expression more than threefold. They direct expression of a hybrid protein (green fluorescent protein, GFP, plus the tetracycline repressor, TetR) from a TetR-regulated promoter. The stability of the resultant expression (as compared to expression from constructs that lack TetR control) may explain why about 40% of known transcription factors in Escherichia coli negatively regulate themselves.

Popular Now

  1. Man Receives First In Vivo Gene-Editing Therapy
  2. Researchers Build a Cancer Immunotherapy Without Immune Cells
  3. Research Links Gut Health to Neurodegeneration
    The Nutshell Research Links Gut Health to Neurodegeneration

    Rodent studies presented at the Society for Neuroscience meeting this week tie pathologies in the gastrointestinal tract or microbiome composition with Parkinson’s and Alzheimer’s diseases.

  4. Long-term Study Finds That the Pesticide Glyphosate Does Not Cause Cancer
RayBiotech