Intracellular localization gives first clue to protein function

Going from gene sequence to protein function presents a great challenge to genome biology. In the September 15 EMBO Reports, Simpson et al. suggest that the systematic identification of subcellular localization can significantly enhance our ability to assign functions to unknown ORFs (EMBO Reports 2000, 1:287-292). Simpson et al. outline a strategy for such an approach. They adapted the Gateway cloning system to allow rapid, directional cloning of ORFs by recombination, and generate amino- and c

By | October 6, 2000

Going from gene sequence to protein function presents a great challenge to genome biology. In the September 15 EMBO Reports, Simpson et al. suggest that the systematic identification of subcellular localization can significantly enhance our ability to assign functions to unknown ORFs (EMBO Reports 2000, 1:287-292). Simpson et al. outline a strategy for such an approach. They adapted the Gateway cloning system to allow rapid, directional cloning of ORFs by recombination, and generate amino- and carboxy- terminal GFP (green fluorescence protein) fusions. The authors used protein localization in living cells to follow the GFP-tagged proteins and to categorize clones for further study. More than 80% of proteins localized to recognized structures such as the cytosol (18%), nucleus (12%), secretory pathway (28%), mitochondria (5%) or the cytoskeleton (3%). Combining compartmentalization data with bioinformatic analysis of the cDNA sequences offers a promising strategy for predicting protein function. The authors stress that this approach has features amenable to scale-up for high-throughput analysis - it is rapid, efficient and has potential for automation.

Popular Now

  1. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  2. Two Dozen House Republicans Do an About-Face on Tuition Tax
  3. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  4. The Biggest DNA Origami Structures Yet
    Daily News The Biggest DNA Origami Structures Yet

    Three new strategies for using DNA to generate large, self-assembling shapes create everything from a nanoscale teddy bear to a nanoscale Mona Lisa.

FreeShip