Wilmut leaves nuclear transfer behind

Ian Wilmut, the Scottish scientist who championed linkurl:somatic-cell nuclear transfer;https://www.the-scientist.com/2007/6/1/34/1/ -- most famously with the cloned sheep Dolly -- is choosing a different technique for his future research in stem cells. Wilmut has said he will shift his therapeutic focus from embryonic stem cells to induced pluripotent stem cells. As opposed to nuclear transfer with embryonic stem cells, this technique transfects adult fibroblast cells with transcription factors

By | November 19, 2007

Ian Wilmut, the Scottish scientist who championed linkurl:somatic-cell nuclear transfer;https://www.the-scientist.com/2007/6/1/34/1/ -- most famously with the cloned sheep Dolly -- is choosing a different technique for his future research in stem cells. Wilmut has said he will shift his therapeutic focus from embryonic stem cells to induced pluripotent stem cells. As opposed to nuclear transfer with embryonic stem cells, this technique transfects adult fibroblast cells with transcription factors that make them pluripotent. According to the __Telegraph__ newspaper in Britian, Wilmut is linkurl:dropping plans;http://www.telegraph.co.uk/earth/main.jhtml?view=DETAILS&grid=A1YourView&xml=/earth/2007/11/16/scidolly116.xml to clone human embryos. Just two years ago Wilmut linkurl:wrote;https://www.the-scientist.com/article/display/15421 in __The Scientist__ that he had been awarded a license to clone human embryos to study Lou Gehrig disease. At the time, he argued that it was the best way to understand and treat the disease, and there have been some recent successes in nuclear transfer, including a report last week of cloning linkurl:primates,;https://www.the-scientist.com/blog/display/53861 and one earlier this year regarding linkurl:mice.;https://www.the-scientist.com/news/display/53272 However, linkurl:new developments;https://www.the-scientist.com/blog/display/24307 in de-programming adult cells apparently have Wilmut thinking otherwise. Wilmut said in the news report that "I have no doubt that in the long term, direct reprogramming will be more productive, though we can't be sure exactly when, next year or five years into the future."

Popular Now

  1. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  2. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  3. Antiviral Immunotherapy Comes of Age
    News Analysis Antiviral Immunotherapy Comes of Age

    T-cell therapies are not just for cancer. Researchers are also advancing immunotherapy methods to protect bone marrow transplant patients from viral infections. 

  4. The Rising Research Profile of 23andMe
    News Analysis The Rising Research Profile of 23andMe

    An exploration of the genetics of earlobe attachment is just the latest collaborative research project to come out of the personal genetic testing company.

FreeShip