Finding Injury

The brain’s phagocytes follow an ATP bread trail laid down by calcium waves to the site of damage.

By Hayley Dunning | September 1, 2012

RIDING THE WAVE: Microglia (purple) responding to an injury-induced Ca2+ wave (gray) in zebrafish brain tissue surrounded by blood vessels (blue)EMBL Heidelberg, Dirk Sieger

 

EDITOR'S CHOICE IN NEUROSCIENCE

 

The paper


D. Sieger et al., “Long-range Ca2+ waves transmit brain-damage signals to microglia,” Dev Cell, 22:1138-48, 2012.

 

 

The finding


When a brain injury occurs, microglia—phagocytic cells that reside in the central nervous system—flock to the site to clear injured neurons and allow tissue regeneration. Monitoring the process in vivo in the brains of zebrafish embryos, Francesca Peri at the European Molecular Biology Laboratory in Heidelberg, Germany, and colleagues observed that calcium waves are responsible for carrying the ATP signal that draws microglia to the injury site.

 

 

The cut


“How microglia rapidly recognize damaged cells located at a distance has remained elusive,” says neuroscientist Samuel David at McGill University, who was not involved in the study, in an e-mail. So Peri and colleagues used a laser cutting device mounted to a confocal spinning-disk microscope to inflict precise, reproducible damage to the brains of larval zebrafish and filmed how microglia, involved in brain healing, reacted.

 

 

The path


It was known that microglia follow extracellular ATP to the injury site, but ATP degrades rapidly in this situation, so it was unclear how it could travel across the brain to attract microglia if it diffused from a single point source. Peri’s team noticed that rapid waves of Ca2+ propagating from the injury site stimulated the release of ATP from healthy cells surrounding the injured tissue, drawing in the microglia. Real-time analysis suggested that injured cells released glutamate, which instigated the calcium wave.

 

 

The crowd


While essential, excess microglia can impair recovery and cause neuronal damage through inflammation. The mechanism for this is not precisely known, and Peri hopes that by inflicting cuts of different scales, some of the mystery may be uncovered.

 

 

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Stem Cell Vaccine Protects Mice From Cancer
  2. Love in the Scientific Literature
    News Analysis Love in the Scientific Literature

    There are countless ways for scientists to say, “I love you.” Naming a slime-mold beetle after your wife (and another after your ex-wife) is, apparently, one of them.  

  3. DNA Robots Target Cancer
    Daily News DNA Robots Target Cancer

    Researchers use DNA origami to generate tiny mechanical devices that deliver a drug that cuts off the blood supply to tumors in mice.

  4. CDC: Flu Vaccine 36 Percent Effective So Far
AAAS